An Open-Source Package for Information Retrieval.

Overview

OpenMatch

An Open-Source Package for Information Retrieval.

😃 What's New

  • Top Spot on TREC-COVID Challenge (May 2020, Round2)

    The twin goals of the challenge are to evaluate search algorithms and systems for helping scientists, clinicians, policy makers, and others manage the existing and rapidly growing corpus of scientific literature related to COVID-19, and to discover methods that will assist with managing scientific information in future global biomedical crises.
    >> Reproduce Our Submit >> About COVID-19 Dataset >> Our Paper

Overview

OpenMatch integrates excellent neural methods and technologies to provide a complete solution for deep text matching and understanding. The documentation and tutorial of OpenMatch are available at here.

1/ Document Retrieval

Document Retrieval refers to extracting a set of related documents from large-scale document-level data based on user queries.

* Sparse Retrieval

Sparse Retriever is defined as a sparse bag-of-words retrieval model.

* Dense Retrieval

Dense Retriever performs retrieval by encoding documents and queries into dense low-dimensional vectors, and selecting the document that has the highest inner product with the query

2/ Document Reranking

Document reranking aims to further match user query and documents retrieved by the previous step with the purpose of obtaining a ranked list of relevant documents.

* Neural Ranker

Neural Ranker uses neural network as ranker to reorder documents.

* Feature Ensemble

Feature Ensemble can fuse neural features learned by neural ranker with the features of non-neural methods to obtain more robust performance

3/ Domain Transfer Learning

Domain Transfer Learning can leverages external knowledge graphs or weak supervision data to guide and help ranker to overcome data scarcity.

* Knowledge Enhancemnet

Knowledge Enhancement incorporates entity semantics of external knowledge graphs to enhance neural ranker.

* Data Augmentation

Data Augmentation leverages weak supervision data to improve the ranking accuracy in certain areas that lacks large scale relevance labels.

Stage Model Paper
1/ Sparse Retrieval BM25 Best Match25 ~Tool
1/ Dense Retrieval ANN Approximate nearest neighbor ~Tool
2/ Neural Ranker K-NRM End-to-End Neural Ad-hoc Ranking with Kernel Pooling ~Paper
2/ Neural Ranker Conv-KNRM Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search ~Paper
2/ Neural Ranker TK Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking ~Paper
2/ Neural Ranker BERT BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding ~Paper
2/ Feature Ensemble Coordinate Ascent Linear feature-based models for information retrieval. Information Retrieval ~Paper
3/ Knowledge Enhancement EDRM Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval ~Paper
3/ Data Augmentation ReInfoSelect Selective Weak Supervision for Neural Information Retrieval ~Paper

Note that the BERT model is following huggingface's implementation - transformers, so other bert-like models are also available in our toolkit, e.g. electra, scibert.

Installation

* From PyPI

pip install git+https://github.com/thunlp/OpenMatch.git

* From Source

git clone https://github.com/thunlp/OpenMatch.git
cd OpenMatch
python setup.py install

* From Docker

To build an OpenMatch docker image from Dockerfile

docker build -t <image_name> .

To run your docker image just built above as a container

docker run --gpus all --name=<container_name> -it -v /:/all/ --rm <image_name>:<TAG>

Quick Start

* Detailed examples are available here.

import torch
import OpenMatch as om

query = "Classification treatment COVID-19"
doc = "By retrospectively tracking the dynamic changes of LYM% in death cases and cured cases, this study suggests that lymphocyte count is an effective and reliable indicator for disease classification and prognosis in COVID-19 patients."

* For bert-like models:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
input_ids = tokenizer.encode(query, doc)
model = om.models.Bert("allenai/scibert_scivocab_uncased")
ranking_score, ranking_features = model(torch.tensor(input_ids).unsqueeze(0))

* For other models:

tokenizer = om.data.tokenizers.WordTokenizer(pretrained="./data/glove.6B.300d.txt")
query_ids, query_masks = tokenizer.process(query, max_len=16)
doc_ids, doc_masks = tokenizer.process(doc, max_len=128)
model = om.models.KNRM(vocab_size=tokenizer.get_vocab_size(),
                       embed_dim=tokenizer.get_embed_dim(),
                       embed_matrix=tokenizer.get_embed_matrix())
ranking_score, ranking_features = model(torch.tensor(query_ids).unsqueeze(0),
                                        torch.tensor(query_masks).unsqueeze(0),
                                        torch.tensor(doc_ids).unsqueeze(0),
                                        torch.tensor(doc_masks).unsqueeze(0))

* The GloVe can be downloaded using:

wget http://nlp.stanford.edu/data/glove.6B.zip -P ./data
unzip ./data/glove.6B.zip -d ./data

* Evaluation

metric = om.Metric()
res = metric.get_metric(qrels, ranking_list, 'ndcg_cut_20')
res = metric.get_mrr(qrels, ranking_list, 'mrr_cut_10')

Experiments

* Ad-hoc Search

Retriever Reranker Coor-Ascent ClueWeb09 Robust04 ClueWeb12
SDM KNRM - 0.1880 0.3016 0.0968
SDM Conv-KNRM - 0.1894 0.2907 0.0896
SDM EDRM - 0.2015 0.2993 0.0937
SDM TK - 0.2306 0.2822 0.0966
SDM BERT Base - 0.2701 0.4168 0.1183
SDM ELECTRA Base - 0.2861 0.4668 0.1078

* MS MARCO Passage Ranking

Retriever Reranker Coor-Ascent dev eval
BM25 BERT Base - 0.349 0.345
BM25 ELECTRA Base - 0.352 0.344
BM25 RoBERTa Large - 0.386 0.375
BM25 ELECTRA Large - 0.388 0.376

* MS MARCO Document Ranking

Retriever Reranker Coor-Ascent dev eval
ANCE FirstP - - 0.373 0.334
ANCE MaxP - - 0.383 0.342
ANCE FirstP+BM25 BERT Base FirstP + 0.431 0.380
ANCE MaxP BERT Base MaxP + 0.432 0.391

* Classic Features

Methods ClueWeb09-B Robust04 TREC-COVID
[email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
BM25 (Anserini) 0.2773 0.1426 0.4129 0.1117 0.6979 0.7670
RankSVM (Dai et al.) 0.289 n.a. 0.420 n.a. n.a. n.a.
RankSVM (OpenMatch) 0.2825 0.1476 0.4309 0.1173 0.6995 0.7570
Coor-Ascent (Dai et al.) 0.295 n.a. 0.427 n.a. n.a. n.a.
Coor-Ascent (OpenMatch) 0.2969 0.1581 0.4340 0.1171 0.7041 0.7770

Contribution

Thanks to all the people who contributed to OpenMatch!

Kaitao Zhang, Si Sun, Zhenghao Liu, Aowei Lu

Project Organizers

  • Zhiyuan Liu
  • Chenyan Xiong
  • Maosong Sun

Citation

@inproceedings{openmatch,
  author = {Liu, Zhenghao and Zhang, Kaitao and Xiong, Chenyan and Liu, Zhiyuan and Sun, Maosong},
  title = {OpenMatch: An Open Source Library for Neu-IR Research},
  booktitle = {Proceedings of SIGIR},
  year = {2021},
  url = {https://doi.org/10.1145/3404835.3462789},
  pages = {2531–2535}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
JugLab 33 Dec 30, 2022