An Open-Source Package for Information Retrieval.

Overview

OpenMatch

An Open-Source Package for Information Retrieval.

😃 What's New

  • Top Spot on TREC-COVID Challenge (May 2020, Round2)

    The twin goals of the challenge are to evaluate search algorithms and systems for helping scientists, clinicians, policy makers, and others manage the existing and rapidly growing corpus of scientific literature related to COVID-19, and to discover methods that will assist with managing scientific information in future global biomedical crises.
    >> Reproduce Our Submit >> About COVID-19 Dataset >> Our Paper

Overview

OpenMatch integrates excellent neural methods and technologies to provide a complete solution for deep text matching and understanding. The documentation and tutorial of OpenMatch are available at here.

1/ Document Retrieval

Document Retrieval refers to extracting a set of related documents from large-scale document-level data based on user queries.

* Sparse Retrieval

Sparse Retriever is defined as a sparse bag-of-words retrieval model.

* Dense Retrieval

Dense Retriever performs retrieval by encoding documents and queries into dense low-dimensional vectors, and selecting the document that has the highest inner product with the query

2/ Document Reranking

Document reranking aims to further match user query and documents retrieved by the previous step with the purpose of obtaining a ranked list of relevant documents.

* Neural Ranker

Neural Ranker uses neural network as ranker to reorder documents.

* Feature Ensemble

Feature Ensemble can fuse neural features learned by neural ranker with the features of non-neural methods to obtain more robust performance

3/ Domain Transfer Learning

Domain Transfer Learning can leverages external knowledge graphs or weak supervision data to guide and help ranker to overcome data scarcity.

* Knowledge Enhancemnet

Knowledge Enhancement incorporates entity semantics of external knowledge graphs to enhance neural ranker.

* Data Augmentation

Data Augmentation leverages weak supervision data to improve the ranking accuracy in certain areas that lacks large scale relevance labels.

Stage Model Paper
1/ Sparse Retrieval BM25 Best Match25 ~Tool
1/ Dense Retrieval ANN Approximate nearest neighbor ~Tool
2/ Neural Ranker K-NRM End-to-End Neural Ad-hoc Ranking with Kernel Pooling ~Paper
2/ Neural Ranker Conv-KNRM Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search ~Paper
2/ Neural Ranker TK Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking ~Paper
2/ Neural Ranker BERT BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding ~Paper
2/ Feature Ensemble Coordinate Ascent Linear feature-based models for information retrieval. Information Retrieval ~Paper
3/ Knowledge Enhancement EDRM Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval ~Paper
3/ Data Augmentation ReInfoSelect Selective Weak Supervision for Neural Information Retrieval ~Paper

Note that the BERT model is following huggingface's implementation - transformers, so other bert-like models are also available in our toolkit, e.g. electra, scibert.

Installation

* From PyPI

pip install git+https://github.com/thunlp/OpenMatch.git

* From Source

git clone https://github.com/thunlp/OpenMatch.git
cd OpenMatch
python setup.py install

* From Docker

To build an OpenMatch docker image from Dockerfile

docker build -t <image_name> .

To run your docker image just built above as a container

docker run --gpus all --name=<container_name> -it -v /:/all/ --rm <image_name>:<TAG>

Quick Start

* Detailed examples are available here.

import torch
import OpenMatch as om

query = "Classification treatment COVID-19"
doc = "By retrospectively tracking the dynamic changes of LYM% in death cases and cured cases, this study suggests that lymphocyte count is an effective and reliable indicator for disease classification and prognosis in COVID-19 patients."

* For bert-like models:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
input_ids = tokenizer.encode(query, doc)
model = om.models.Bert("allenai/scibert_scivocab_uncased")
ranking_score, ranking_features = model(torch.tensor(input_ids).unsqueeze(0))

* For other models:

tokenizer = om.data.tokenizers.WordTokenizer(pretrained="./data/glove.6B.300d.txt")
query_ids, query_masks = tokenizer.process(query, max_len=16)
doc_ids, doc_masks = tokenizer.process(doc, max_len=128)
model = om.models.KNRM(vocab_size=tokenizer.get_vocab_size(),
                       embed_dim=tokenizer.get_embed_dim(),
                       embed_matrix=tokenizer.get_embed_matrix())
ranking_score, ranking_features = model(torch.tensor(query_ids).unsqueeze(0),
                                        torch.tensor(query_masks).unsqueeze(0),
                                        torch.tensor(doc_ids).unsqueeze(0),
                                        torch.tensor(doc_masks).unsqueeze(0))

* The GloVe can be downloaded using:

wget http://nlp.stanford.edu/data/glove.6B.zip -P ./data
unzip ./data/glove.6B.zip -d ./data

* Evaluation

metric = om.Metric()
res = metric.get_metric(qrels, ranking_list, 'ndcg_cut_20')
res = metric.get_mrr(qrels, ranking_list, 'mrr_cut_10')

Experiments

* Ad-hoc Search

Retriever Reranker Coor-Ascent ClueWeb09 Robust04 ClueWeb12
SDM KNRM - 0.1880 0.3016 0.0968
SDM Conv-KNRM - 0.1894 0.2907 0.0896
SDM EDRM - 0.2015 0.2993 0.0937
SDM TK - 0.2306 0.2822 0.0966
SDM BERT Base - 0.2701 0.4168 0.1183
SDM ELECTRA Base - 0.2861 0.4668 0.1078

* MS MARCO Passage Ranking

Retriever Reranker Coor-Ascent dev eval
BM25 BERT Base - 0.349 0.345
BM25 ELECTRA Base - 0.352 0.344
BM25 RoBERTa Large - 0.386 0.375
BM25 ELECTRA Large - 0.388 0.376

* MS MARCO Document Ranking

Retriever Reranker Coor-Ascent dev eval
ANCE FirstP - - 0.373 0.334
ANCE MaxP - - 0.383 0.342
ANCE FirstP+BM25 BERT Base FirstP + 0.431 0.380
ANCE MaxP BERT Base MaxP + 0.432 0.391

* Classic Features

Methods ClueWeb09-B Robust04 TREC-COVID
[email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
BM25 (Anserini) 0.2773 0.1426 0.4129 0.1117 0.6979 0.7670
RankSVM (Dai et al.) 0.289 n.a. 0.420 n.a. n.a. n.a.
RankSVM (OpenMatch) 0.2825 0.1476 0.4309 0.1173 0.6995 0.7570
Coor-Ascent (Dai et al.) 0.295 n.a. 0.427 n.a. n.a. n.a.
Coor-Ascent (OpenMatch) 0.2969 0.1581 0.4340 0.1171 0.7041 0.7770

Contribution

Thanks to all the people who contributed to OpenMatch!

Kaitao Zhang, Si Sun, Zhenghao Liu, Aowei Lu

Project Organizers

  • Zhiyuan Liu
  • Chenyan Xiong
  • Maosong Sun

Citation

@inproceedings{openmatch,
  author = {Liu, Zhenghao and Zhang, Kaitao and Xiong, Chenyan and Liu, Zhiyuan and Sun, Maosong},
  title = {OpenMatch: An Open Source Library for Neu-IR Research},
  booktitle = {Proceedings of SIGIR},
  year = {2021},
  url = {https://doi.org/10.1145/3404835.3462789},
  pages = {2531–2535}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023