PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

Overview

PFENet

This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Get Started

Environment

  • torch==1.4.0 (torch version >= 1.0.1.post2 should be okay to run this repo)
  • numpy==1.18.4
  • tensorboardX==1.8
  • cv2==4.2.0

Datasets and Data Preparation

Please download the following datasets:

  • PASCAL-5i is based on the PASCAL VOC 2012 and SBD where the val images should be excluded from the list of training samples.

  • COCO 2014.

This code reads data from .txt files where each line contains the paths for image and the correcponding label respectively. Image and label paths are seperated by a space. Example is as follows:

image_path_1 label_path_1
image_path_2 label_path_2
image_path_3 label_path_3
...
image_path_n label_path_n

Then update the train/val/test list paths in the config files.

[Update] We have uploaded the lists we use in our paper.

  • The train/val lists for COCO contain 82081 and 40137 images respectively. They are the default train/val splits of COCO.
  • The train/val lists for PASCAL5i contain 5953 and 1449 images respectively. The train list should be voc_sbd_merge_noduplicate.txt and the val list is the original val list of pascal voc (val.txt).
To get voc_sbd_merge_noduplicate.txt:
  • We first merge the original VOC (voc_original_train.txt) and SBD (sbd_data.txt) training data.
  • [Important] sbd_data.txt does not overlap with the PASCALVOC 2012 validation data.
  • The merged list (voc_sbd_merge.txt) is then processed by the script (duplicate_removal.py) to remove the duplicate images and labels.

Run Demo / Test with Pretrained Models

  • Please download the pretrained models.

  • We provide 8 pre-trained models: 4 ResNet-50 based models for PASCAL-5i and 4 VGG-16 based models for COCO.

  • Update the config file by speficifying the target split and path (weights) for loading the checkpoint.

  • Execute mkdir initmodel at the root directory.

  • Download the ImageNet pretrained backbones and put them into the initmodel directory.

  • Then execute the command:

    sh test.sh {*dataset*} {*model_config*}

Example: Test PFENet with ResNet50 on the split 0 of PASCAL-5i:

sh test.sh pascal split0_resnet50

Train

Execute this command at the root directory:

sh train.sh {*dataset*} {*model_config*}

Related Repositories

This project is built upon a very early version of SemSeg: https://github.com/hszhao/semseg.

Other projects in few-shot segmentation:

Many thanks to their greak work!

Citation

If you find this project useful, please consider citing:

@article{tian2020pfenet,
  title={Prior Guided Feature Enrichment Network for Few-Shot Segmentation},
  author={Tian, Zhuotao and Zhao, Hengshuang and Shu, Michelle and Yang, Zhicheng and Li, Ruiyu and Jia, Jiaya},
  journal={TPAMI},
  year={2020}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022