A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

Overview

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

This repository contains a PyTorch implementation for the paper: Deep Pyramidal Residual Networks (CVPR 2017, Dongyoon Han*, Jiwhan Kim*, and Junmo Kim, (equally contributed by the authors*)). The code in this repository is based on the example provided in PyTorch examples and the nice implementation of Densely Connected Convolutional Networks.

Two other implementations with LuaTorch and Caffe are provided:

  1. A LuaTorch implementation for PyramidNets,
  2. A Caffe implementation for PyramidNets.

Usage examples

To train additive PyramidNet-200 (alpha=300 with bottleneck) on ImageNet-1k dataset with 8 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --data ~/dataset/ILSVRC/Data/CLS-LOC/ --net_type pyramidnet --lr 0.05 --batch_size 128 --depth 200 -j 16 --alpha 300 --print-freq 1 --expname PyramidNet-200 --dataset imagenet --epochs 100

To train additive PyramidNet-110 (alpha=48 without bottleneck) on CIFAR-10 dataset with a single-GPU:

CUDA_VISIBLE_DEVICES=0 python train.py --net_type pyramidnet --alpha 64 --depth 110 --no-bottleneck --batch_size 32 --lr 0.025 --print-freq 1 --expname PyramidNet-110 --dataset cifar10 --epochs 300

To train additive PyramidNet-164 (alpha=48 with bottleneck) on CIFAR-100 dataset with 4 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --net_type pyramidnet --alpha 48 --depth 164 --batch_size 128 --lr 0.5 --print-freq 1 --expname PyramidNet-164 --dataset cifar100 --epochs 300

Notes

  1. This implementation contains the training (+test) code for add-PyramidNet architecture on ImageNet-1k dataset, CIFAR-10 and CIFAR-100 datasets.
  2. The traditional data augmentation for ImageNet and CIFAR datasets are used by following fb.resnet.torch.
  3. The example codes for ResNet and Pre-ResNet are also included.
  4. For efficient training on ImageNet-1k dataset, Intel MKL and NVIDIA(nccl) are prerequistes. Please check the official PyTorch github for the installation.

Tracking training progress with TensorBoard

Thanks to the implementation, which support the TensorBoard to track training progress efficiently, all the experiments can be tracked with tensorboard_logger.

Tensorboard_logger can be installed with

pip install tensorboard_logger

Paper Preview

Abstract

Deep convolutional neural networks (DCNNs) have shown remarkable performance in image classification tasks in recent years. Generally, deep neural network architectures are stacks consisting of a large number of convolution layers, and they perform downsampling along the spatial dimension via pooling to reduce memory usage. At the same time, the feature map dimension (i.e., the number of channels) is sharply increased at downsampling locations, which is essential to ensure effective performance because it increases the capability of high-level attributes. Moreover, this also applies to residual networks and is very closely related to their performance. In this research, instead of using downsampling to achieve a sharp increase at each residual unit, we gradually increase the feature map dimension at all the units to involve as many locations as possible. This is discussed in depth together with our new insights as it has proven to be an effective design to improve the generalization ability. Furthermore, we propose a novel residual unit capable of further improving the classification accuracy with our new network architecture. Experiments on benchmark CIFAR datasets have shown that our network architecture has a superior generalization ability compared to the original residual networks.

Schematic Illustration

We provide a simple schematic illustration to compare the several network architectures, which have (a) basic residual units, (b) bottleneck, (c) wide residual units, and (d) our pyramidal residual units, and (e) our pyramidal bottleneck residual units, as follows:

image

Experimental Results

  1. The results are readily reproduced, which show the same performances as those reproduced with A LuaTorch implementation for PyramidNets.

  2. Comparison of the state-of-the-art networks by [Top-1 Test Error Rates VS # of Parameters]:

image

  1. Top-1 test error rates (%) on CIFAR datasets are shown in the following table. All the results of PyramidNets are produced with additive PyramidNets, and α denotes alpha (the widening factor). “Output Feat. Dim.” denotes the feature dimension of just before the last softmax classifier.

image

ImageNet-1k Pretrained Models

  • A pretrained model of PyramidNet-101-360 is trained from scratch using the code in this repository (single-crop (224x224) validation error rates are reported):
Network Type Alpha # of Params Top-1 err(%) Top-5 err(%) Model File
ResNet-101 (Caffe model) - 44.7M 23.6 7.1 Original Model
ResNet-101 (Luatorch model) - 44.7M 22.44 6.21 Original Model
PyramidNet-v1-101 360 42.5M 21.98 6.20 Download
  • Note that the above widely-used ResNet-101 (Caffe model) is trained with the images, where the pixel intensities are in [0,255] and are centered by the mean image, our PyramidNet-101 is trained with the images where the pixel values are standardized.
  • The model is originally trained with PyTorch-0.4, and the keys of num_batches_tracked were excluded for convenience (the BatchNorm2d layer in PyTorch (>=0.4) contains the key of num_batches_tracked by track_running_stats).

Updates

  1. Some minor bugs are fixed (2018/02/22).
  2. train.py is updated (including ImagNet-1k training code) (2018/04/06).
  3. resnet.py and PyramidNet.py are updated (2018/04/06).
  4. preresnet.py (Pre-ResNet architecture) is uploaded (2018/04/06).
  5. A pretrained model using PyTorch is uploaded (2018/07/09).

Citation

Please cite our paper if PyramidNets are used:

@article{DPRN,
  title={Deep Pyramidal Residual Networks},
  author={Han, Dongyoon and Kim, Jiwhan and Kim, Junmo},
  journal={IEEE CVPR},
  year={2017}
}

If this implementation is useful, please cite or acknowledge this repository on your work.

Contact

Dongyoon Han ([email protected]), Jiwhan Kim ([email protected]), Junmo Kim ([email protected])

Owner
Greg Dongyoon Han
Greg Dongyoon Han
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022