Sequence-to-Sequence learning using PyTorch

Overview

Seq2Seq in PyTorch

This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train and infer using them.

Using this code you can train:

  • Neural-machine-translation (NMT) models
  • Language models
  • Image to caption generation
  • Skip-thought sentence representations
  • And more...

Installation

git clone --recursive https://github.com/eladhoffer/seq2seq.pytorch
cd seq2seq.pytorch; python setup.py develop

Models

Models currently available:

Datasets

Datasets currently available:

All datasets can be tokenized using 3 available segmentation methods:

  • Character based segmentation
  • Word based segmentation
  • Byte-pair-encoding (BPE) as suggested by bpe with selectable number of tokens.

After choosing a tokenization method, a vocabulary will be generated and saved for future inference.

Training methods

The models can be trained using several methods:

  • Basic Seq2Seq - given encoded sequence, generate (decode) output sequence. Training is done with teacher-forcing.
  • Multi Seq2Seq - where several tasks (such as multiple languages) are trained simultaneously by using the data sequences as both input to the encoder and output for decoder.
  • Image2Seq - used to train image to caption generators.

Usage

Example training scripts are available in scripts folder. Inference examples are available in examples folder.

  • example for training a transformer on WMT16 according to original paper regime:
DATASET=${1:-"WMT16_de_en"}
DATASET_DIR=${2:-"./data/wmt16_de_en"}
OUTPUT_DIR=${3:-"./results"}

WARMUP="4000"
LR0="512**(-0.5)"

python main.py \
  --save transformer \
  --dataset ${DATASET} \
  --dataset-dir ${DATASET_DIR} \
  --results-dir ${OUTPUT_DIR} \
  --model Transformer \
  --model-config "{'num_layers': 6, 'hidden_size': 512, 'num_heads': 8, 'inner_linear': 2048}" \
  --data-config "{'moses_pretok': True, 'tokenization':'bpe', 'num_symbols':32000, 'shared_vocab':True}" \
  --b 128 \
  --max-length 100 \
  --device-ids 0 \
  --label-smoothing 0.1 \
  --trainer Seq2SeqTrainer \
  --optimization-config "[{'step_lambda':
                          \"lambda t: { \
                              'optimizer': 'Adam', \
                              'lr': ${LR0} * min(t ** -0.5, t * ${WARMUP} ** -1.5), \
                              'betas': (0.9, 0.98), 'eps':1e-9}\"
                          }]"
  • example for training attentional LSTM based model with 3 layers in both encoder and decoder:
python main.py \
  --save de_en_wmt17 \
  --dataset ${DATASET} \
  --dataset-dir ${DATASET_DIR} \
  --results-dir ${OUTPUT_DIR} \
  --model RecurrentAttentionSeq2Seq \
  --model-config "{'hidden_size': 512, 'dropout': 0.2, \
                   'tie_embedding': True, 'transfer_hidden': False, \
                   'encoder': {'num_layers': 3, 'bidirectional': True, 'num_bidirectional': 1, 'context_transform': 512}, \
                   'decoder': {'num_layers': 3, 'concat_attention': True,\
                               'attention': {'mode': 'dot_prod', 'dropout': 0, 'output_transform': True, 'output_nonlinearity': 'relu'}}}" \
  --data-config "{'moses_pretok': True, 'tokenization':'bpe', 'num_symbols':32000, 'shared_vocab':True}" \
  --b 128 \
  --max-length 80 \
  --device-ids 0 \
  --trainer Seq2SeqTrainer \
  --optimization-config "[{'epoch': 0, 'optimizer': 'Adam', 'lr': 1e-3},
                          {'epoch': 6, 'lr': 5e-4},
                          {'epoch': 8, 'lr':1e-4},
                          {'epoch': 10, 'lr': 5e-5},
                          {'epoch': 12, 'lr': 1e-5}]" \
Owner
Elad Hoffer
Elad Hoffer
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022