Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

Related tags

Deep LearningVANET
Overview

VANET

Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

Introduction

This is the implementation of article VANet "Vehicle Re-identification with Viewpoint-aware Metric Learning", which support both single-branch training and two branch training.

Implementation details

The whole implementation is based on PVEN project(https://github.com/silverbulletmdc/PVEN). The key code block added and modified are mainly distributed as follows:

For network construction:
    This project provide two version of backbone, namely 'googlenet' and 'resnet50' respectively. There the corresponding configuration files 
    as well as other corresponding code interfence are all provided completely.
    code location: vehicle_reid_pytorch/models/vanet.py

For training:
    This project provide two mode of training, namely 'single branch(baseline of VANet)' and 'two branch(VANet)' respectively
    code location: examples/parsing_reid/main_vanet_single_branch.py
    code location: examples/parsing_reid/main_vanet_two_branch.py

Configuration files:
    code location: examples/parsing_reid/configs/veri776_b64_baseline_vanet_single_branch_resnet.yml
    code location: examples/parsing_reid/configs/veri776_b64_baseline_vanet_two_branch_resnet.yml
    code location: examples/parsing_reid/configs/veri776_b64_baseline_vanet_two_branch_googlenet.yml

For loss calculation:
    code location: vehicle_reid_pytorch/loss/triplet_loss.py

For evaluation:
    mAP, cmc, ..., hist distribution figure drawing function are included.
    code location: examples/parsing_reid/math_tools.py

Results comparasion

We have achieved the following preformance by using the method this paper 'VANET' provided.

     -------------------------- -----------------------------------
                  |    mAP    |   rank-1  |   rank-5  |  rank-10  |
     --------------------------------- ----------------------------
      VANET+BOT   |   80.1%   |   96.5    |   98.5    |    99.4   | 
     --------------------------------------------------------------
      BOT(ours)   |   77.8%   |   95.3    |   97.8    |    98.8   |
     --------------------------------------------------------------
      BOT[1]      |   78.2%   |   95.5    |   97.9    |      *    |
     --------------------------------------------------------------

Note: The 'BOT', which means "bag of tricks" proposed by paper[2]. With respect to the two branch implementation of the above "VANET+BOT", we adopted the first 6 layers of the official resnet50 as the shared_conv network, the remaining two layers as the branch_conv network.There are also instructions in the corresponding code when you use.

Also, four type data's(similar-view_same-id, similar-view_different-id, different-view_different-id, different-view_same-id) distribution are drawn based on paper's aspect. note: this visualization code can be founded at examples/parsing_reid/math_tools.py

1. Get started

All the results are tested on VeRi-776 dstasets. Please reference to the environment implementation of other general reid projects, this project reference to fast-reid's.

2. Training

Reference to folder run_sh/run_main_XXX.sh Note: If you want to use your own dataset for training, remember to keep your data's structure be consistent with the veri776 dataloader's output in this project, reference to realted code for more details.

Example:

  sh ./run_sh/run_main_vanet_two_branch_resnet.sh

3. evaluation

Reference to folder run_sh/run_eval_XXX.sh Note: We have add 'drawing hist graph' function in evaluated stage, if you needn't this statistic operation temporarily, remember to shut down this function, for the operation is to some extent time-consuming, detail code block are located in examples/parsing_reid/math_tools.py.

Example:

  sh ./run_sh/run_eval_two_branch_resnet.sh

reference

[1] Khorramshahi, Pirazh, et al. "The devil is in the details: Self-supervised attention for vehicle re-identification." European Conference on Computer Vision. Springer, Cham, 2020.

[2] Luo, Hao, et al. "Bag of tricks and a strong baseline for deep person re-identification." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2019.

Contact

For any question, please file an issue or contact

Shichao Liu (Shanghai Em-Data Technology Co., Ltd.) [email protected]
Owner
EMDATA-AILAB
EMDATA-AILAB
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022