Lightweight plotting to the terminal. 4x resolution via Unicode.

Related tags

Deep Learninguniplot
Overview

Uniplot

Build Status PyPI Version PyPI Downloads

Lightweight plotting to the terminal. 4x resolution via Unicode.

uniplot demo GIF

When working with production data science code it can be handy to have plotting tool that does not rely on graphics dependencies or works only in a Jupyter notebook.

The use case that this was built for is to have plots as part of your data science / machine learning CI pipeline - that way whenever something goes wrong, you get not only the error and backtrace but also plots that show what the problem was.

Features

  • Unicode drawing, so 4x the resolution (pixels) of usual ASCII plots
  • Super simple API
  • Interactive mode (pass interactive=True)
  • Color mode (pass color=True) useful in particular when plotting multiple series
  • It's fast: Plotting 1M data points takes 100ms thanks to NumPy magic
  • Only one dependency: NumPy (but you have that anyway don't you)

Please note that Unicode drawing will work correctly only when using a font that fully supports the Box-drawing character set. Please refer to this page for a (incomplete) list of supported fonts.

Examples

Note that all the examples are without color and plotting only a single series od data. For using color see the GIF example above.

Plot sine wave

import math
x = [math.sin(i/20)+i/300 for i in range(600)]
from uniplot import plot
plot(x, title="Sine wave")

Result:

                          Sine wave
┌────────────────────────────────────────────────────────────┐
│                                                    ▟▀▚     │
│                                                   ▗▘ ▝▌    │
│                                       ▗▛▜▖        ▞   ▐    │
│                                       ▞  ▜       ▗▌    ▌   │ 2
│                           ▟▀▙        ▗▘  ▝▌      ▐     ▜   │
│                          ▐▘ ▝▖       ▞    ▜      ▌     ▝▌  │
│              ▗▛▜▖        ▛   ▜      ▗▌    ▝▌    ▐▘      ▜  │
│              ▛  ▙       ▗▘   ▝▖     ▐      ▚    ▞       ▝▌ │
│  ▟▀▖        ▐▘  ▝▖      ▟     ▚     ▌      ▝▖  ▗▌        ▜▄│ 1
│ ▐▘ ▐▖       ▛    ▙      ▌     ▐▖   ▗▘       ▚  ▞           │
│ ▛   ▙      ▗▘    ▐▖    ▐       ▙   ▞        ▝▙▟▘           │
│▐▘   ▐▖     ▐      ▌    ▛       ▐▖ ▗▘                       │
│▞     ▌     ▌      ▐   ▗▘        ▜▄▛                        │
│▌─────▐────▐▘───────▙──▞────────────────────────────────────│ 0
│       ▌   ▛        ▝▙▟▘                                    │
│       ▜  ▐▘                                                │
│        ▙▄▛                                                 │
└────────────────────────────────────────────────────────────┘
         100       200       300       400       500       600

Plot global temperature data

Here we're using Pandas to load and prepare gloabl temperature data from the Our World in Data GitHub repository.

First we load the data, rename a column and and filter the data:

import pandas as pd
uri = "https://github.com/owid/owid-datasets/raw/master/datasets/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre.csv"
data = pd.read_csv(uri)
data = data.rename(columns={"Global average temperature anomaly (Hadley Centre)": "Global"})
data = data[data.Entity == "median"]

Then we can plot it:

from uniplot import plot
plot(xs=data.Year, ys=data.Global, lines=True, title="Global normalized land-sea temperature anomaly", y_unit=" °C")

Result:

        Global normalized land-sea temperature anomaly
┌────────────────────────────────────────────────────────────┐
│                                                          ▞▀│
│                                                         ▐  │
│                                                         ▐  │
│                                                     ▗   ▌  │ 0.6 °C
│                                           ▙  ▗▄ ▛▄▖▗▘▌ ▞   │
│                                          ▗▜  ▌ ▜  ▚▞ ▚▞    │
│                                          ▐▝▖▐      ▘       │
│                                    ▗   ▗ ▌ ▙▌              │ 0.3 °C
│                                    ▛▖  ▞▙▘  ▘              │
│                              ▖  ▗▄▗▘▐ ▐▘▜                  │
│                            ▟ █  ▞ ▜ ▝▄▘                    │
│   ▗▚   ▗    ▖       ▗   ▖▗▞ █▐  ▌    ▘                     │
│▁▁▁▞▐▁▁▗▘▜▗▀▀▌▁▁▁▁▙▁▁▟▁▁▁▙▐▁▁▜▁▌▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0 °C
│▚ ▐ ▝▖ ▐  ▛  ▌ ▗▄▐ ▌▗▘▌ ▐▝▌    ▝▘                           │
│ ▌▌  ▌ ▞     ▐▗▘ ▛ ▐▞ ▌ ▐                                   │
│ ▝   ▝▖▌     ▐▞    ▝▌ ▚▜▐                                   │
│      ▗▌     ▝        ▝ ▌                                   │
└────────────────────────────────────────────────────────────┘
1,950    1,960    1,970   1,980    1,990    2,000   2,010

Parameters

The plot function accepts a number of parameters, all listed below. Note that only ys is required, all others are optional.

There is also a plot_to_string function with the same signature, if you want the result as a list of strings, to include the output elsewhere.

Data

  • xs - The x coordinates of the points to plot. Can either be None, or a list or NumPy array for plotting a single series, or a list of those for plotting multiple series. Defaults to None, meaning that the x axis will be just the sample index of ys.
  • ys - The y coordinates of the points to plot. Can either be a list or NumPy array for plotting a single series, or a list of those for plotting multiple series.

Options

In alphabetical order:

  • color - Draw series in color. Defaults to False when plotting a single series, and to True when plotting multiple.
  • height - The height of the plotting region, in characters. Default is 17.
  • interactive - Enable interactive mode. Defaults to False.
  • legend_labels - Labels for the series. Can be None or a list of strings. Defaults to None.
  • lines - Enable lines between points. Can either be True or False, or a list of those values for plotting multiple series. Defaults to False.
  • line_length_hard_cap - Enforce a hard limit on the number of characters per line of the plot area. This may override the width option if there is not enough space. Defaults to None.
  • title - The title of the plot. Defaults to None.
  • width - The width of the plotting region, in characters. Default is 60. Note that if the line_length_hard_cap option is used and there is not enough space, the actual width may be smaller.
  • x_gridlines - A list of x values that have a vertical line for better orientation. Defaults to [0].
  • x_max - Maximum x value of the view. Defaults to a value that shows all data points.
  • x_min - Minimum x value of the view. Defaults to a value that shows all data points.
  • x_unit - Unit of the x axis. This is a string that is appended to the axis labels. Defaults to "".
  • y_gridlines - A list of y values that have a horizontal line for better orientation. Defaults to [0].
  • y_max - Maximum y value of the view. Defaults to a value that shows all data points.
  • y_min - Minimum y value of the view. Defaults to a value that shows all data points.
  • y_unit - Unit of the y axis. This is a string that is appended to the axis labels. Defaults to "".

Experimental features

For convenience there is also a histogram function that accepts one or more series and plots bar-chart like histograms. It will automatically discretize the series into a number of bins given by the bins option and display the result.

When calling the histogram function, the lines option is True by default.

Example:

import numpy as np
x = np.sin(np.linspace(1, 1000))
from uniplot import histogram
histogram(x)

Result:

┌────────────────────────────────────────────────────────────┐
│   ▛▀▀▌                       │                   ▐▀▀▜      │ 5
│   ▌  ▌                       │                   ▐  ▐      │
│   ▌  ▌                       │                   ▐  ▐      │
│   ▌  ▀▀▀▌                    │                ▐▀▀▀  ▝▀▀▜   │ 4
│   ▌     ▌                    │                ▐        ▐   │
│   ▌     ▌                    │                ▐        ▐   │
│   ▌     ▙▄▄▄▄▄▖              │          ▗▄▄▄  ▐        ▐   │ 3
│   ▌           ▌              │          ▐  ▐  ▐        ▐   │
│   ▌           ▌              │          ▐  ▐  ▐        ▐   │
│   ▌           ▌              │          ▐  ▐  ▐        ▐   │
│   ▌           ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▜  ▐▀▀▀  ▝▀▀▀        ▐   │ 2
│   ▌                          │    ▐  ▐                 ▐   │
│   ▌                          │    ▐  ▐                 ▐   │
│   ▌                          │    ▐▄▄▟                 ▐   │ 1
│   ▌                          │                         ▐   │
│   ▌                          │                         ▐   │
│▄▄▄▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▐▄▄▄│ 0
└────────────────────────────────────────────────────────────┘
     -1                        0                       1

Installation

Install via pip using:

pip install uniplot

Roadmap

Coming up:

  • Fill area under curve
  • Log scales
  • Add generated page with list of supported fonts
  • Auto-detect color mode depending on terminal capabilities
  • Possibly: Fallback to ASCII characters

Input is always welcome, let me know what is most needed for this to be as useful as possible.

Contributing

Clone this repository, and install dependecies via pip3 install -e .\[dev\]. You can run the tests vie ./run_tests to make sure your setup is good. Then proceed with issues, PRs etc. the usual way.

Comments
  • Get a plot as a string

    Get a plot as a string

    I'm working on a tool that I would love to be able to integrate uniplot into, but I'm running into a problem: I need to capture the output as a string so that I can display it elsewhere. Right now, uniplot.plot prints directly to stdout: https://github.com/olavolav/uniplot/blob/master/uniplot/uniplot.py#L74

    I'm not sure how to square this with the interactive features implemented in that function. Perhaps a helper function could be extracted that returns the plot as a string? Then I could call that function from my tool to get the string that uniplot.plot would have displayed.

    Happy to do the work on this if you can provide some guidance on how you'd like it implemented!

    feature request 
    opened by JoshKarpel 6
  • Requesting Support for Plotting Line Graphs

    Requesting Support for Plotting Line Graphs

    Hi Olav. Appreciate the great work with this project. Found this quite useful in logging some data graphically to the terminal in a few of my Data Science projects. Here is a recommendation for a new feature that can be added. I understand that there is currently support for plotting Scatter Plots and Histograms in Uniplot. Would be great if support for plotting Line Graphs was also added to visualize the trend of data. Kindly look into the possibility of doing this. Thanks.

    feature request 
    opened by ghost 6
  • Missing precision on x axis values, making them identical

    Missing precision on x axis values, making them identical

    Hello Olav, I have noticed a small problem when displaying the x axis values. The values seem to be rounded too much making them identical and equal to 0. It seems to happen when one value is positive, the other negative and the values are close to 0 (+-0.01) I included screenshots of it.

    PS: uniplot feels great, keep it up!

    Screenshot 2021-01-22 at 16 58 48 Screenshot 2021-01-22 at 17 08 59 bug 
    opened by AntoineSto 3
  • [Question] Does Uniplot Support .py files?

    [Question] Does Uniplot Support .py files?

    Hello,

    This is an interesting project! Thank you for taking the time to put it together.

    Quick question:

    When testing out uniplot I'm able to call .plot() from the python console or through ipython, and get a visualization quite easily. However, it does not work when I include uniplot in a .py file and I execute the file.

    # foo.py
    import unipolot as plot
    import math
    x = [math.sin(i / 20) + i / 300 for i in range(600)]
    p = plot(x)
    
    
    $ python foo.py
    Traceback (most recent call last):
      File "foo.py", line 4, in <module>
        p = plot(x)
    TypeError: 'module' object is not callable
    

    Is this expected behaviour, or am I missing something from the docs?

    Thanks,

    question 
    opened by robertdefilippi 2
  • Occasional gaps in lines

    Occasional gaps in lines

    Sometimes there are gaps at the end of lines.

    To reproduce

    >>> from uniplot import plot
    >>> plot(xs=[0.433,0.6666], ys=[0.8,0.1133], x_min=0, x_max=1, y_min=0, y_max=1, lines=True)
    DEBUG indices_slope -0.8571428571428571 slope -2.939640410958905
    DEBUG x_index_start 51
    DEBUG x_index_stop 79
    DEBUG x_indices_of_line [52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
     76 77 78]
    ┌────────────────────────────────────────────────────────────┐
    ││                                                           │ 1.0
    ││                                                           │ 
    ││                                                           │ 
    ││                        ▝▖                                 │ 
    ││                         ▝▚                                │ 0.7
    ││                           ▚                               │ 
    ││                            ▚▖                             │ 
    ││                             ▝▖                            │ 
    ││                              ▝▖                           │ 0.5
    ││                               ▝▚                          │ 
    ││                                 ▚                         │ 
    ││                                  ▚▖                       │ 
    ││                                   ▝▖                      │ 0.3
    ││                                    ▝▖                     │ 
    ││                                     ▝▘                    │ 
    ││                                      ▝                    │ 
    ││▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0.0
    └────────────────────────────────────────────────────────────┘
     0                                                          1
    

    This is not a bug, but an artifact of the line drawing attempting to be accurate. If the end pixel is drawn because of an end pint that is significantly away from the center of the pixel then this is possible.

    Possible solutions

    • The obvious solution would be to draw the line between the middle points of the start and end pixel, not the actual line.
    • An alternative might be to check for gaps and correct it by drawing another pixel.
    opened by olavolav 2
  • Fill area under curve

    Fill area under curve

    This was on the roadmap but have not heard anyone actually request it. So I'll leave the prototypical hack here as an issue in case anyone wants to actually have it.

    So in theory we could have an option like y_fill_level that enables filling the are between the points and a given vertical level, usually the zero line.

    It might look something like:

    plot(ys, title="Sine wave", y_fill_level=-2.5)
                              Sine wave
    ┌────────────────────────────────────────────────────────────┐
    │                                                    ▟█▙     │ 
    │                                                   ▗███▌    │ 
    │                                       ▗██▖        ▟████    │ 
    │                                       ▟███       ▗█████▌   │ 2
    │                           ▟█▙        ▗████▌      ▐██████   │ 
    │                          ▐███▖       ▟█████      ███████▌  │ 
    │              ▗██▖        █████      ▗██████▌    ▐████████  │ 
    │              ███▙       ▗█████▖     ▐██████▙    ▟████████▌ │ 
    │  ▟█▖        ▐████▖      ▟█████▙     ████████▖  ▗██████████▄│ 1
    │ ▐███▖       █████▙      ███████▖   ▗████████▙  ▟███████████│ 
    │ ████▙      ▗██████▖    ▐███████▙   ▟█████████▙▟████████████│ 
    │▐█████▖     ▐██████▌    █████████▖ ▗████████████████████████│ 
    │▟█████▌     ████████   ▗██████████▄█████████████████████████│ 
    │███████────▐████████▙──▟████████████████████████████████████│ 0
    │███████▌   ██████████▙▟█████████████████████████████████████│ 
    │████████  ▐█████████████████████████████████████████████████│ 
    │████████▙▄██████████████████████████████████████████████████│ 
    └────────────────────────────────────────────────────────────┘
             100       200       300       400       500       600
    

    And then with colors it might look like: Screen Shot 2021-05-01 at 18 18 25

    Let me know if this feature would be useful.

    low prio feedback wanted 
    opened by olavolav 1
  • Crash after zooming

    Crash after zooming

    To reproduce:

    from uniplot import plot, histogram
    import numpy as np  # type: ignore
    
    # Exception when zooming in
    
    xs = np.array(
        [
            0,
            1,
            2,
            3,
            4,
            5,
            6,
            7,
            8,
            9,
            10,
            11,
            12,
            13,
            14,
            15,
            16,
            17,
            18,
            19,
            20,
            21,
            22,
            23,
            24,
            25,
            26,
            27,
            28,
            29,
            30,
            31,
            32,
            33,
            34,
            35,
            36,
            37,
            38,
            39,
            40,
            41,
            42,
            43,
            44,
            45,
            46,
            47,
            48,
            49,
            50,
            51,
            52,
            53,
            54,
            55,
            56,
            57,
            58,
            59,
            60,
            61,
            62,
            63,
            64,
            65,
            66,
            67,
            68,
            69,
            70,
            71,
            72,
            73,
            74,
            75,
            76,
            77,
            78,
            79,
            80,
            81,
            82,
            83,
            84,
            85,
            86,
            87,
            88,
            89,
            90,
            91,
            92,
            93,
            94,
            95,
            96,
            97,
            98,
            99,
            100,
            101,
            102,
            103,
            104,
            105,
            106,
            107,
            108,
            109,
            110,
            111,
            112,
            113,
            114,
            115,
            116,
            117,
            118,
            119,
            120,
            121,
            122,
            123,
            124,
            125,
            126,
            127,
            128,
            129,
            130,
            131,
            132,
            133,
            134,
            135,
            136,
            137,
            138,
            139,
            140,
            141,
            142,
            143,
            144,
            145,
            146,
            147,
            148,
            149,
            150,
            151,
            152,
            153,
            154,
            155,
            156,
            157,
            158,
            159,
            160,
            161,
            162,
            163,
            164,
            165,
            166,
            167,
            168,
            169,
            170,
            171,
            172,
            173,
            174,
            175,
            176,
            177,
            178,
            179,
            180,
            181,
            182,
            183,
            184,
            185,
            186,
            187,
            188,
            189,
            190,
            191,
            192,
            193,
            194,
            195,
            196,
            197,
            198,
            199,
            200,
            201,
            202,
            203,
            204,
            205,
            206,
            207,
            208,
            209,
            210,
            211,
            212,
            213,
            214,
            215,
            216,
            217,
            218,
            219,
            220,
            221,
            222,
            223,
            224,
            225,
            226,
            227,
            228,
            229,
            230,
            231,
            232,
            233,
            234,
            235,
            236,
            237,
            238,
            239,
            240,
            241,
            242,
            243,
            244,
            245,
            246,
            247,
            248,
            249,
            250,
            251,
            252,
            253,
            254,
            255,
            256,
            257,
            258,
            259,
            260,
            261,
            262,
            263,
            264,
            265,
            266,
            267,
            268,
            269,
            270,
            271,
            272,
            273,
            274,
            275,
            276,
            277,
            278,
            279,
            280,
            281,
            282,
            283,
            284,
            285,
            286,
            287,
            288,
            289,
            290,
            291,
            292,
            293,
            294,
            295,
            296,
            297,
            298,
            299,
            300,
            301,
            302,
            303,
            304,
            305,
            306,
            307,
            308,
            309,
            310,
            311,
            312,
            313,
            314,
            315,
            316,
            317,
            318,
            319,
            320,
            321,
            322,
            323,
            324,
            325,
            326,
            327,
            328,
            329,
            330,
            331,
            332,
            333,
            334,
            335,
            336,
            337,
            338,
            339,
            340,
            341,
            342,
            343,
            344,
            345,
            346,
            347,
            348,
            349,
            350,
            351,
            352,
            353,
            354,
            355,
            356,
            357,
            358,
            359,
            360,
            361,
            362,
            363,
            364,
            365,
            366,
            367,
            368,
            369,
            370,
            371,
            372,
            373,
            374,
            375,
            376,
            377,
            378,
            379,
            380,
            381,
            382,
            383,
            384,
            385,
            386,
            387,
            388,
            389,
            390,
            391,
            392,
            393,
            394,
            395,
            396,
            397,
            398,
            399,
            400,
            401,
            402,
            403,
            404,
            405,
            406,
            407,
            408,
            409,
            410,
            411,
            412,
            413,
            414,
            415,
            416,
            417,
            418,
            419,
            420,
            421,
            422,
            423,
            424,
            425,
            426,
            427,
            428,
            429,
            430,
            431,
            432,
            433,
            434,
            435,
            436,
            437,
            438,
            439,
            440,
            441,
            442,
            443,
            444,
            445,
            446,
            447,
            448,
            449,
            450,
            451,
            452,
            453,
            454,
            455,
            456,
            457,
            458,
            459,
            460,
            461,
            462,
            463,
            464,
            465,
            466,
            467,
            468,
            469,
            470,
            471,
            472,
            473,
            474,
            475,
            476,
            477,
            478,
            479,
            480,
            481,
            482,
            483,
            484,
            485,
            486,
            487,
            488,
            489,
            490,
            491,
            492,
            493,
            494,
            495,
            496,
            497,
            498,
            499,
        ]
    )
    ys = np.array(
        [
            1.26230459e00,
            3.59321301e-01,
            2.11936647e00,
            1.84432132e00,
            2.27899071e00,
            1.51661172e00,
            1.95712695e-01,
            1.64582244e00,
            1.19080132e00,
            1.77906596e00,
            2.60834568e00,
            4.01352512e00,
            1.12257450e00,
            -2.38223520e-01,
            3.17199023e-01,
            2.85413316e-01,
            9.91733067e-01,
            1.84263384e00,
            2.32001561e00,
            1.33347914e00,
            3.46571661e-01,
            1.34794460e00,
            1.36144011e00,
            2.22913711e00,
            2.95592602e00,
            3.01213057e00,
            1.87905661e00,
            4.10827814e-01,
            -2.75564854e-01,
            1.03768731e00,
            -3.97770275e-01,
            3.06930582e00,
            2.78850709e00,
            1.48173807e00,
            -4.55744704e-03,
            -1.32975609e00,
            6.36077517e-02,
            1.83738438e00,
            1.68082395e00,
            1.39683868e00,
            -9.97108469e-02,
            -9.49959243e-01,
            7.88987944e-01,
            5.23096813e-01,
            1.79377985e00,
            2.56523643e00,
            1.65300403e00,
            1.40698126e00,
            7.48265081e-01,
            6.23696401e-01,
            9.13088969e-01,
            7.17841682e-01,
            1.76776214e00,
            3.85539288e00,
            1.44986447e00,
            2.91732462e-02,
            1.34081560e00,
            6.29367473e-01,
            1.89256668e00,
            -5.01236350e-01,
            2.44245545e00,
            -3.76219798e-01,
            -1.52341955e00,
            6.89569262e-02,
            3.47522530e-01,
            -1.68230067e-01,
            1.34471069e00,
            1.18431856e00,
            1.31349600e00,
            7.29997833e-01,
            2.89225012e-01,
            -2.80413712e00,
            7.50533432e-01,
            8.71114431e-01,
            7.07190831e-01,
            3.17740131e00,
            5.86036160e-01,
            5.90711279e-01,
            -7.22011344e-01,
            -1.50789690e-01,
            1.50888043e00,
            3.91049296e-01,
            2.35969482e00,
            1.08970815e00,
            1.42594895e00,
            4.96137247e-01,
            1.30358513e00,
            3.34551072e00,
            1.93665667e00,
            1.53050683e00,
            2.36212454e00,
            -5.24698604e-01,
            4.42035630e-02,
            -9.42400877e-01,
            9.51652062e-01,
            -6.94684749e-01,
            2.91913781e00,
            4.31538812e-02,
            -1.24747396e00,
            7.96053706e-02,
            1.87125758e00,
            3.24216046e00,
            1.21241355e00,
            1.18453587e00,
            -6.06840947e-01,
            -5.66081726e-01,
            1.95866564e00,
            1.73761292e-01,
            1.45443360e00,
            3.12741942e00,
            2.18546158e00,
            3.38033204e-01,
            7.39796805e-02,
            -4.12367686e-01,
            2.09752078e00,
            2.94173384e00,
            1.43576006e00,
            2.35233888e00,
            1.75026987e-01,
            -7.96761454e-01,
            1.16392155e00,
            3.95625636e-01,
            3.25318881e00,
            1.50728811e00,
            4.19976468e00,
            2.68370507e-01,
            2.61967644e00,
            -8.89491321e-02,
            2.55987916e00,
            2.56399322e00,
            9.51770979e-01,
            6.74653511e-01,
            2.33729281e-01,
            -7.14686280e-01,
            -2.67159716e-01,
            1.13894794e00,
            3.23252390e00,
            1.33774678e00,
            1.31868005e00,
            1.81951904e-01,
            4.79242635e-01,
            2.15532864e-01,
            6.92885478e-01,
            1.70927123e00,
            1.32722492e00,
            1.44586826e00,
            1.29820650e00,
            3.99065294e-01,
            -5.78380524e-01,
            9.27519202e-01,
            2.47403927e-01,
            1.55674871e00,
            -3.25379422e-01,
            1.09442721e00,
            -4.74897587e-01,
            1.93365775e00,
            1.41704079e00,
            2.91712317e00,
            2.66207768e00,
            1.84139843e-01,
            1.37767813e-01,
            1.25142357e00,
            4.84057548e-01,
            6.07245680e-01,
            3.30181350e-01,
            2.43432229e00,
            2.56402791e00,
            -6.93171018e-01,
            6.68779033e-01,
            -1.94396361e-01,
            1.51260020e00,
            2.49096620e00,
            2.45031139e00,
            3.03096170e-01,
            -8.18876084e-01,
            8.19588735e-01,
            -1.17728460e00,
            -1.16854500e00,
            2.44811633e00,
            1.93316841e00,
            1.37030049e00,
            7.81292142e-01,
            4.01495947e-01,
            1.47579864e-01,
            -2.84856788e-01,
            1.98363074e00,
            2.19940360e00,
            -8.05836667e-01,
            1.46269262e00,
            -7.71479430e-01,
            -4.29736882e-01,
            1.49405237e00,
            1.83036686e00,
            9.27646287e-01,
            1.42684947e00,
            -1.47479979e00,
            -2.83542544e00,
            -1.32329789e00,
            8.63657805e-01,
            1.67849080e00,
            2.90746670e-01,
            1.21004861e00,
            -1.20775413e00,
            -5.31279246e-01,
            1.56967687e00,
            1.83278302e00,
            9.72991848e-01,
            1.67934543e00,
            1.94689352e00,
            -1.29059489e00,
            -1.66424333e-01,
            6.79751734e-01,
            1.91516968e00,
            1.71575116e00,
            1.79466158e00,
            5.07323181e-01,
            6.24431305e-01,
            1.25871938e00,
            9.73003775e-01,
            1.83284056e00,
            7.67068188e-01,
            2.16195802e00,
            1.97370305e00,
            7.27160897e-01,
            -9.71488218e-01,
            -8.58690312e-01,
            -3.67525205e-01,
            1.29494233e00,
            7.18195673e-02,
            1.21326802e00,
            -7.58598785e-01,
            -1.06418506e-03,
            -3.60541127e-01,
            5.97630287e-01,
            1.16314252e00,
            2.79888774e00,
            3.17366401e00,
            8.46983160e-01,
            1.71412642e-02,
            -5.94253205e-01,
            1.10030645e-01,
            8.48605322e-01,
            1.60590771e00,
            1.51386287e00,
            -7.66986890e-01,
            3.71606231e-01,
            9.31114992e-01,
            1.14051595e00,
            3.12671250e00,
            8.41910255e-01,
            1.81572098e00,
            7.26485448e-01,
            9.54109141e-01,
            -7.01049465e-01,
            -7.08966723e-01,
            1.84269535e00,
            2.23904728e00,
            1.04671627e00,
            3.85234747e-02,
            -4.04382967e-01,
            7.65336840e-01,
            7.72256692e-01,
            1.39904849e00,
            1.49380494e00,
            1.02689147e00,
            7.66556348e-01,
            6.45355391e-01,
            5.92087646e-01,
            1.45512657e00,
            8.99221323e-01,
            2.24730476e00,
            1.83258046e00,
            1.76767850e00,
            -8.32995347e-02,
            1.43100675e00,
            1.42191705e-01,
            2.27576545e00,
            3.39549232e00,
            3.35252919e00,
            1.48749067e00,
            -1.17012953e00,
            -6.15039264e-01,
            9.25848706e-01,
            8.39612122e-01,
            3.49473756e00,
            3.62672699e00,
            7.11679401e-01,
            -6.21133647e-01,
            -1.71974130e-01,
            2.19582351e-01,
            1.70029203e00,
            4.97072898e-01,
            3.07661373e00,
            5.89705127e-01,
            -3.85557180e-01,
            -1.21627747e-01,
            6.88094658e-01,
            2.08683855e00,
            2.04800796e00,
            3.67022420e-01,
            3.03847578e-02,
            2.12803068e-01,
            1.27382824e00,
            2.20525878e00,
            2.09729942e00,
            2.92745219e00,
            1.43501329e00,
            -1.00158984e00,
            -4.26869441e-01,
            2.38459396e-01,
            6.18281003e-01,
            2.86900336e00,
            5.26441897e-01,
            1.83471736e00,
            5.64276032e-01,
            -4.79185498e-02,
            1.56645081e00,
            1.90975688e00,
            1.96805054e00,
            1.32437211e00,
            1.54723551e00,
            2.97027599e00,
            8.23747319e-01,
            -1.07597824e00,
            1.29796781e-01,
            3.08261173e00,
            1.94024883e00,
            1.67053036e00,
            7.68453719e-01,
            2.53848214e-01,
            -2.71074406e-01,
            1.11041190e00,
            3.06171371e00,
            2.88915244e00,
            2.00362771e00,
            1.67907635e00,
            9.25318467e-01,
            -6.21558807e-01,
            3.77295621e-01,
            2.51130485e00,
            1.23662523e00,
            1.47239092e00,
            1.17058209e00,
            1.47667951e-01,
            1.33386697e-01,
            -4.53263981e-01,
            1.12631733e00,
            3.26298892e00,
            2.35568468e00,
            3.83027496e-01,
            -3.78093690e-02,
            6.37261226e-01,
            1.72890857e00,
            2.57274809e00,
            2.60905435e00,
            1.56994909e00,
            5.17535191e-01,
            3.77275665e-01,
            -3.45929860e-01,
            2.58949535e00,
            7.62669260e-01,
            3.47958346e00,
            1.83376087e00,
            3.34759101e-01,
            -1.39156268e-01,
            1.24690335e-01,
            1.07593646e00,
            1.77047871e00,
            1.18853328e00,
            8.68015144e-01,
            8.48988929e-01,
            -8.95110881e-01,
            1.07420642e-01,
            3.06363479e00,
            7.15866469e-01,
            1.66342966e00,
            2.57150732e00,
            -1.04277245e-01,
            -2.90886083e00,
            -1.00809760e00,
            7.93375194e-01,
            2.20504948e00,
            2.85967791e00,
            2.15743733e00,
            2.08510982e00,
            3.16493745e-01,
            -1.04790522e00,
            1.30076686e-01,
            1.47648939e00,
            9.65983115e-01,
            3.03133713e00,
            -2.24802033e00,
            -1.90839207e-01,
            1.41532791e00,
            7.77675677e-01,
            2.91494777e00,
            2.70474727e00,
            2.01074236e00,
            1.30244225e00,
            -4.91068641e-01,
            4.32498323e-01,
            1.95233060e00,
            3.07520214e00,
            3.78334096e00,
            3.35590562e00,
            -8.08053405e-01,
            4.51994781e-01,
            7.74504797e-01,
            3.52334793e-01,
            2.44854135e00,
            3.34811742e00,
            1.82352584e00,
            2.26330255e00,
            2.77269351e-01,
            6.07576157e-02,
            -2.01833711e-01,
            1.04185052e00,
            2.32538242e00,
            2.84038167e00,
            2.29044210e00,
            7.03146152e-01,
            -6.01907112e-01,
            1.80397234e00,
            1.98634086e00,
            1.22690644e00,
            3.21915541e00,
            -1.17284206e00,
            -1.54417786e00,
            9.18351626e-01,
            1.76980729e00,
            1.04351305e00,
            2.36195029e00,
            1.16500774e00,
            6.12450462e-01,
            -7.08609723e-01,
            1.04230824e00,
            1.70969447e00,
            2.64288913e00,
            2.34976952e-01,
            1.18716059e00,
            -6.61424108e-02,
            -1.20049369e00,
            -1.12993788e-01,
            7.55088949e-01,
            1.83416312e00,
            2.91320098e00,
            2.24328733e00,
            2.40555340e00,
            -8.20700873e-01,
            -2.63662670e-01,
            2.94146708e00,
            1.04753337e00,
            2.53330830e00,
            2.32237327e00,
            3.59879157e00,
            -8.70552383e-02,
            -1.59399066e00,
            5.19713176e-01,
            2.12543089e00,
            6.33612253e-01,
            6.34693702e-03,
            5.60397860e-01,
            1.11221859e00,
            5.75088199e-01,
            1.47442294e00,
            1.57493470e00,
            2.26755516e00,
            1.01931474e00,
            8.58035549e-01,
            6.32568766e-02,
            -9.93171533e-02,
            9.53238163e-01,
            -7.85355122e-02,
            2.21938966e00,
            -7.07804875e-01,
            1.67680863e00,
            -6.63675108e-01,
            8.64217983e-02,
            6.97749258e-01,
            1.31259744e00,
            2.59287989e00,
            1.56744990e00,
            7.89167355e-01,
            1.81647380e00,
            7.08114108e-02,
            4.20118710e-01,
            2.17202561e00,
            2.82122287e00,
            3.27621088e00,
            6.30451516e-01,
            9.99653246e-01,
            1.30341376e00,
            5.29974172e-01,
            2.89059099e00,
            1.37370641e00,
            1.23284225e00,
            9.20544746e-02,
            -2.13971697e00,
            6.64817992e-02,
            4.62250775e-01,
        ]
    )
    

    After zooming in a few times, it looks something like this:

    ┌────────────────────────────────────────────────────────────┐
    │▐  ▐  █ ▐  ▖ ▟▟ █ ▐█    ▌    ▐▌▐▐    ▌▌▐▐ ▌ ▙▌ ▐ ▌▐ ▌▌▐▐▌▐  │ 1.7
    │▐▐ ▐  █ ▐  ▌ ██ ▌▌▐▛▖   ▌  ▌ ▐▌▐▐    ▌▌▐▐ ▌ █▌ ▐ ▌▐▌▌▌▌▐▌▐▌▐│ 
    │▐▐ ▐  █▖▐▙ █ ██ ▌▌▐▌▌   ▌  █ ▐▌▐▐ ▐ ▗▌▙▐▐ ▌ ▜▌ ▐ ▌▐▌▌▌▌▐▌▌▚▐│ 
    │▐▐ ▐▚ █▌▞█ █ ██ ▌▌▐▌▌▗  ▌  █ ▐▌▐▐ ▐▌▐▌█▟▐ ▌▖▐▌ ▐ ▙▐▌▙▌▌▞▚▌▐▐│ 
    │█▝ ▐▐ █▌▌█ █▌██ ▌▌█▌▌▐▌▐▌  █ ▟▌▐▐ ▌▌▐▌██▐ ▌▌▐▌ ▐ █▐▌█▌▌ ▐▌█▐│ 1.2
    │█  ▐▐ █▌▌█ █▌▛█▐ █▌▌▌▐▙ ▌ ▐▐▐▐▌▐▐ ▌▌▐▌█▛▐ █▌▐▌ ▝▌█▐▌██▌▌▐▌█▐│ 
    │█  ▐▐ ██▌▜ █▌▌▜▐ █▘▌▌▐█ ▌ ▐▐▐▐█▐▐▖▌▚▐▌█▌▐▐█▌▐▌  ▌█▐▌██▌▌▐▌█▐│ 
    │█ ▐▐▐ ██▌▐ █▌▌▐▐▗█ ▌▌▐█ ▌▌▟▐▐▝▐▐▐▙▌▐▞ █▌▐▐▜▌▐▙  ▌█▐▌█▜▌▌▐▌█▐│ 
    │█ ▐▐▝▖██▌▐ █▌▌▐▐▝█ ▌▌▐█▐ ▚▜▐▞ ▐▐▐█ ▝▌ █▌▐▐▐▌▐█ ▌▌█▐▘█▐▌▌▐▌█▐│ 0.6
    │█ ▐▐ ▌██▌▐ █▌▌▐▐ ▌ ▌▌▐█▐ ▐▐▐▌ ▝▟▐█    ▜▌▐▐▐▌▐█▐▌▙▜▐ █▐▌▌▐▌▀▟│ 
    │█ ▐▐ ▌██▌▐ █▌▌▐▐   ▌▌▐█▐ ▐▐▐▌  █▝█    ▐▌▐▐▐▌▐ █▌█▐▐▐ ▐▌▌▐▌ █│ 
    │█▐▐▐ ▚██▌▐▐▛▌▌▐▐   ▌▌▞█▐▐▐▐▐▌  █ █    ▐▌▐▐▐▐▌ █▘█▝▐▐ ▐▌▌▐▌ █│ 
    │█▝▟▐ ▐██▌▐▐▌▌▌▐▐   ▌▙▌█▐▐▐▞▐▌  █ █▗   ▐▘▖█▐▐▌▐█ █ ▐▐ ▐▌▌▐▌ █│ 0.1
    │▌▔█▐▔▐▜█▌▐▐▔▌▙▐▐▔▔▔▔█▌▐█▐▐▌▐▌▔▔█▔█▐▔▔▔▐▔▌█▐▐▌▐█▔▌▔▐▐▔▝▌▌▐▌▔█│ 
    │▌ █▌ ▐▐█▌▐▐ █▐ ▌    █▌▐█▐▐▌▐▌  █ █▐     ▌█▐▐▌ █ ▌ ▐▐   ▌▐▌ █│ 
    │▌ █▌ ▝▝█▌▐▐ █▐ ▌    █▌▐█▐▐▌▐▌  █ ▛▐     ▌█▐▐▘ ▌ ▘ ▐▞   ▌▐▌ ▝│ 
    │▌ █▌   █▌▐▐ █▐ ▌    ▐▌▐▘▐ ▌▐▌  █ ▌▐      █▐▐  ▘   ▝▌   ▘▐▌  │ -0.5
    └────────────────────────────────────────────────────────────┘
     168                                                      332
    Move h/j/k/l, zoom u/n, or r to reset. ESC/q to quit
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/Users/olav/Desktop/Development/uniplot/uniplot/uniplot.py", line 48, in plot
        xs=series.xs, ys=series.ys, options=options
      File "/Users/olav/Desktop/Development/uniplot/uniplot/layer_assembly.py", line 24, in assemble_scatter_plot
        pixel_layer = layer_factory.render_points(xs=xs, ys=ys, options=options)
      File "/Users/olav/Desktop/Development/uniplot/uniplot/layer_factory.py", line 75, in render_points
        lines=options.lines,
      File "/Users/olav/Desktop/Development/uniplot/uniplot/pixel_matrix.py", line 125, in render
        # DEBUG
    IndexError: index -167 is out of bounds for axis 1 with size 120
    
    bug 
    opened by olavolav 1
  • Incorrect centering of labels with units

    Incorrect centering of labels with units

    See this example:

    >>> plot([1,3,2], height=2)
    ┌────────────────────────────────────────────────────────────┐
    │                              ▘                            ▗│ 3
    │▖                                                           │ 1
    └────────────────────────────────────────────────────────────┘
     1                             2                            3
    >>> plot([1,3,2], height=2, x_unit=" microns")
    ┌────────────────────────────────────────────────────────────┐
    │                              ▘                            ▗│ 3
    │▖                                                           │ 1
    └────────────────────────────────────────────────────────────┘
     1 microns                     2 microns                    3 microns
    

    What should happen is that the labels are centered, including the units.

    bug 
    opened by olavolav 0
  • Extra lines are drawn that shouldn't be there

    Extra lines are drawn that shouldn't be there

    To Reproduce:

    >>> plot(xs=[1,1], ys=[0,1], lines=True, x_min=3, x_max=6)
    ┌────────────────────────────────────────────────────────────┐
    │                    ▖                                       │ 1.0
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 0.7
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 0.5
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 0.3
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0.0
    └────────────────────────────────────────────────────────────┘
     3                                                          6
    

    Obviously there should not be anything drawn in this view.

    Here, the correct line is drawn, but also weird other ones. In interactive mode this line appears once the real one is out of view.

    bug 
    opened by olavolav 0
  • Requesting Support for Using Non-Number Datatype Values for X-Axis

    Requesting Support for Using Non-Number Datatype Values for X-Axis

    Hi again @olavolav. If I am not wrong, currently there is support for only using Number Datatypes on both the x and y axes. However, while performing time series analysis and plotting trends for the time, we often need to mention the time(month/ date etc.) as a string. I am looking for something similar to this but on the terminal. image

    I dont think that you need to perform any sorting for the date and such internally and we can probably mandate that the user itself sorts the list prior to plotting. Can this be supported?

    feature request 
    opened by ghost 2
Releases(v0.8.1)
  • v0.8.1(Dec 19, 2022)

  • v0.8.0(Nov 2, 2022)

    Changed

    • Switched to Poetry for package and build management.
    • Now using numpy.typing for type hints of NumPy objects, which means that uniplot now support numpy versions >=1.20.0.
    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Dec 2, 2021)

Owner
Olav Stetter
Head of Data Science @ KONUX
Olav Stetter
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023