An open-source library of algorithms to analyse time series in GPU and CPU.

Overview

Khiva

License: MPL 2.0 Gitter chat

Build Documentation Build Linux and Mac OS Build Windows Code Coverage
Documentation Status Build Status Build status Coverage Status

Khiva is an open-source library of efficient algorithms to analyse time series in GPU and CPU. It can be used to extract insights from one or a group of time series. The large number of available methods allow us to understand the nature of each time series. Based on the results of this analysis, users can reduce dimensionality, find out recurrent motifs or discords, understand the seasonality or trend from a given time series, forecasting and detect anomalies.

Khiva provides a mean for time series analytics at scale. These analytics can be exploited in a wide range of use cases across several industries, like energy, finance, e-health, IoT, music industry, etc.

Khiva is inspired by other time series libraries as tsfresh, tslearn and hctsa among others.

Other Matrix Profile implementations

License

This project is licensed under MPL-v2.

Installation

Currently, khiva is supported on Windows, Linux and MacOs, if you need to install the library follow the installation guide.

Contributing

The rules to contribute to this project are described here.

Builds

We have a first approach to generate a build and execute the set of tests on every pull request to the master branch. This process uses travis and appveyor. The status badges of the builds are contained at the beginning of this file.

Referencing Khiva

If you use Khiva in a scientific publication, we would appreciate citations:

@misc{khiva,
 title={Khiva: Accelerated time-series analytics on GPUs and CPU multicores},
 author={Ruiz-Ferrer, Justo and Vilches, Antonio and Torreno, Oscar and Cuesta, David},
 year={2018},
 note={\url{https://github.com/shapelets/khiva}}
}
Comments
  • Segfault and error on Mac with OpenCL and different array types

    Segfault and error on Mac with OpenCL and different array types

    Describe the bug

    Hi, I'm seeing a segfault and error on Mac with OpenCL and different array data types.

    • f32 - success
    • f64 - segfault
    • s32 - error (stack trace below)
      File "/usr/local/lib/python3.9/site-packages/khiva/matrix.py", line 231, in stomp_self_join
        raise Exception(str(error_message.value.decode()))
    Exception: stomp_self_join: ArrayFire Exception (Internal error:998):
    In function cl::Program opencl::buildProgram(const vector<std::__1::string> &, const vector<std::__1::string> &)
    In file src/backend/opencl/compile_module.cpp:128
    OpenCL Device: Intel(R) Iris(TM) 
    

    To Reproduce

    It's easiest to reproduce with the Python library (but think it's probably related to the C++ code).

    from khiva.array import Array, dtype
    from khiva.library import get_backend_info, set_backend, KHIVABackend
    from khiva.matrix import stomp_self_join
    
    # everything works with the CPU backend
    # set_backend(KHIVABackend.KHIVA_BACKEND_CPU)
    
    print(get_backend_info())
    
    # success
    a = Array.from_list([1, 2, 3, 4, 5], dtype.f32)
    stomp_self_join(a, 3)
    
    # segfault
    a = Array.from_list([1, 2, 3, 4, 5], dtype.f64)
    stomp_self_join(a, 3)
    
    # error
    a = Array.from_list([1, 2, 3, 4, 5], dtype.s32)
    stomp_self_join(a, 3)
    

    Expected behavior

    No segfault or error, like with the CPU backend.

    Environment information:

    • OS: Mac OS 11.1
    • Khiva Version: 0.5.0
    • Khiva dependencies versions: ArrayFire 3.7.3, Boost 1.74.0

    Here's the output of get_backend_info():

    ArrayFire v3.7.3 (OpenCL, 64-bit Mac OSX, build default)
    [0] APPLE: Intel(R) Iris(TM) Plus Graphics, 1536 MB
    

    Additional context

    Let me know if there's any I can do to help debug.

    bug 
    opened by ankane 7
  • Tests fail with invalid pointer on free during make

    Tests fail with invalid pointer on free during make

    Not sure if this is on my end or in one of my shared libraries causing the problem.

    Here's the error during the build. https://gist.github.com/zpzim/a7added1e63587e162f871383e33b1dc

    It might be related to Intel TBB. I get this error even when I comment out the entire test function

    opened by zpzim 5
  • Fixing PAA to work with non divisible number of points.

    Fixing PAA to work with non divisible number of points.

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Benchmarks

    • [ ] My PR adds the following micro benchmarks OR does not need benchmarks for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by avilchess 3
  • Linking against gtest: conan builds vs regular cmake builds

    Linking against gtest: conan builds vs regular cmake builds

    Describe the bug Linking errors raise when building the project and linking against the libraries installed by conan. Errors sample:

    CMakeFiles/features.dir/featuresTest.cpp.o: In function `testing::AssertionResult testing::internal::CmpHelperEQFailure<long long, int>(char const*, char const*, long long const&, int const&)':
    /home/asem/.conan/data/gtest/1.8.1/bincrafters/stable/package/4a8c5b4cd3b4d45b83fff85d53160ea02ae5fa2d/include/gtest/gtest.h:1435: undefined reference to `testing::internal::EqFailure(char const*, char const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, bool)'
    

    The linking issue is fixed when linking the khiva tests against the same gtest version 1.8.0 that is built from its main repository.

    Sample from CMakeCache.txt before fixing

    //Path to a file.
    GTEST_INCLUDE_DIRS:PATH=/home/asem/.conan/data/gtest/1.8.1/bincrafters/stable/package/4a8c5b4cd3b4d45b83fff85d53160ea02ae5fa2d/include
    
    //Path to a library.
    GTEST_LIBRARIES:FILEPATH=/home/asem/.conan/data/gtest/1.8.1/bincrafters/stable/package/4a8c5b4cd3b4d45b83fff85d53160ea02ae5fa2d/lib/libgtest.a
    
    //Path to a library.
    GTEST_MAIN_LIBRARIES:FILEPATH=/home/asem/.conan/data/gtest/1.8.1/bincrafters/stable/package/4a8c5b4cd3b4d45b83fff85d53160ea02ae5fa2d/lib/libgtest_main.a
    

    After fixing

    //Path to a file.
    GTEST_INCLUDE_DIRS:PATH=/opt/gtest/include
    
    //Path to a library.
    GTEST_LIBRARIES:FILEPATH=/opt/gtest/lib/libgtest.a
    
    //Path to a library.
    GTEST_MAIN_LIBRARIES:FILEPATH=/opt/gtest/lib/libgtest_main.a
    

    I am just reporting this case since it costed me a lot of time! Couldn't expect that conan might be the reason.

    opened by A-Alaa 3
  • Ruby bindings

    Ruby bindings

    Hi, also wanted to let you know there are now Ruby bindings for Khiva. It's modeled after the Python bindings (with some minor changes to make it more Ruby-like). The C API was really nice to use and easy to follow.

    If you have any feedback, feel free to let me know here or create an issue in the project. Thanks!

    opened by ankane 2
  • Make explicit Arrayfire use config files

    Make explicit Arrayfire use config files

    Make sure you have checked all steps below.

    Description

    • [x] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [x] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Benchmarks

    • [x] My PR adds the following micro benchmarks OR does not need benchmarks for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by raulbocanegra 2
  • Improving visvalingam performance by 3x.

    Improving visvalingam performance by 3x.

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Benchmarks

    • [ ] My PR adds the following micro benchmarks OR does not need benchmarks for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by avilchess 2
  • Feature/scamp chains

    Feature/scamp chains

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Benchmarks

    • [ ] My PR adds the following micro benchmarks OR does not need benchmarks for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by jrecuerda 2
  • Change year

    Change year

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Benchmarks

    • [ ] My PR adds the following micro benchmarks OR does not need benchmarks for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by avilchess 2
  • Feature/headers bindings

    Feature/headers bindings

    Description

    • Added headers guards for avoid double inclusions.

    Tests

    • My PR does not need testing because it does not add any functional feature

    Benchmarks

    • [ ] My PR does not need benchmarks because are only changes in include for avoid double inclusions.

    Commits

    • Add headers guards in bindings includes for C and Java.

    License

    opened by ghost 2
  • Fix/operation array

    Fix/operation array

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Benchmarks

    • [ ] My PR adds the following micro benchmarks OR does not need benchmarks for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by avilchess 2
  • Visvalingam runs on both 64 and 32 floats.

    Visvalingam runs on both 64 and 32 floats.

    Description

    Visvalingam now runs transparently for float64 and float32 types.

    Tests

    Added DimensionalityTests.VisvalingamAF to test both scenarios.

    Benchmarks

    N/A

    opened by justoruiz 0
  • Update .appveyor.yml

    Update .appveyor.yml

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Benchmarks

    • [ ] My PR adds the following micro benchmarks OR does not need benchmarks for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by avilchess 0
  • Fix broken test ClusteringTests.KShapeDouble

    Fix broken test ClusteringTests.KShapeDouble

    18/211 Test  #18: ClusteringTests.KShapeDouble .....................................***Failed   18.02 sec
    Running main() from C:\dev\vcpkg\buildtrees\gtest\src\ase-1.10.0-9cde347ce0.clean\googletest\src\gtest_main.cc
    Note: Google Test filter = ClusteringTests.KShapeDouble
    [==========] Running 1 test from 1 test suite.
    [----------] Global test environment set-up.
    [----------] 1 test from ClusteringTests
    [ RUN      ] ClusteringTests.KShapeDouble
    ←[32m[----------]←[0m CPU backend, device: Intel CPU
    [----------] CUDA backend, device: GeForce_RTX_2060
    ←[32m[----------]←[0m OPENCL backend, device: GeForce_RTX_2060
    ←[32m[----------]←[0m OPENCL backend, device: Intel(R)_UHD_Graphics
    unknown file: error: C++ exception with description "ArrayFire Exception (Internal error:998):
    OpenCL Error (-59): Invalid Operation when calling clEnqueueMapBuffer
    In function class af::array __cdecl af::matmul(const class af::array &,const class af::array &,const af_mat_prop,const af_mat_prop)
    In file src\api\cpp\blas.cpp:20" thrown in the test body.
    [  FAILED  ] ClusteringTests.KShapeDouble (17741 ms)
    [----------] 1 test from ClusteringTests (17741 ms total)
    
    [----------] Global test environment tear-down
    [==========] 1 test from 1 test suite ran. (17741 ms total)
    [  PASSED  ] 0 tests.
    [  FAILED  ] 1 test, listed below:
    [  FAILED  ] ClusteringTests.KShapeDouble
    
     1 FAILED TEST
    
    opened by marregui 0
  • Fix broken test ClusteringTests.KShapeFloat

    Fix broken test ClusteringTests.KShapeFloat

    17/211 Test  #17: ClusteringTests.KShapeFloat ......................................***Failed   18.88 sec
    Running main() from C:\dev\vcpkg\buildtrees\gtest\src\ase-1.10.0-9cde347ce0.clean\googletest\src\gtest_main.cc
    Note: Google Test filter = ClusteringTests.KShapeFloat
    [==========] Running 1 test from 1 test suite.
    [----------] Global test environment set-up.
    [----------] 1 test from ClusteringTests
    [ RUN      ] ClusteringTests.KShapeFloat
    ←[32m[----------]←[0m CPU backend, device: Intel CPU
    [----------] CUDA backend, device: GeForce_RTX_2060
    ←[32m[----------]←[0m OPENCL backend, device: GeForce_RTX_2060
    ←[32m[----------]←[0m OPENCL backend, device: Intel(R)_UHD_Graphics
    unknown file: error: C++ exception with description "ArrayFire Exception (Internal error:998):
    OpenCL Error (-59): Invalid Operation when calling clEnqueueMapBuffer
    In function class af::array __cdecl af::matmul(const class af::array &,const class af::array &,const af_mat_prop,const af_mat_prop)
    In file src\api\cpp\blas.cpp:20" thrown in the test body.
    [  FAILED  ] ClusteringTests.KShapeFloat (18594 ms)
    [----------] 1 test from ClusteringTests (18594 ms total)
    
    [----------] Global test environment tear-down
    [==========] 1 test from 1 test suite ran. (18594 ms total)
    [  PASSED  ] 0 tests.
    [  FAILED  ] 1 test, listed below:
    [  FAILED  ] ClusteringTests.KShapeFloat
    
     1 FAILED TEST
    
    opened by marregui 0
  • Fix broken test MatrixTests.FindBestDiscordsMultipleProfiles

    Fix broken test MatrixTests.FindBestDiscordsMultipleProfiles

    166/211 Test #166: MatrixTests.FindBestDiscordsMultipleProfiles .....................***Failed   19.85 sec
    Running main() from C:\dev\vcpkg\buildtrees\gtest\src\ase-1.10.0-9cde347ce0.clean\googletest\src\gtest_main.cc
    Note: Google Test filter = MatrixTests.FindBestDiscordsMultipleProfiles
    [==========] Running 1 test from 1 test suite.
    [----------] Global test environment set-up.
    [----------] 1 test from MatrixTests
    [ RUN      ] MatrixTests.FindBestDiscordsMultipleProfiles
    ←[32m[----------]←[0m CPU backend, device: Intel CPU
    [----------] CUDA backend, device: GeForce_RTX_2060
    C:\Users\MiguelArregui\workspace\khiva\test\matrixTest.cpp(1148): error: Expected equality of these values:
      subsequenceIndicesHost[0]
        Which is: 10
      0
    ←[32m[----------]←[0m OPENCL backend, device: GeForce_RTX_2060
    ←[32m[----------]←[0m OPENCL backend, device: Intel(R)_UHD_Graphics
    ←[32m[----------]←[0m OPENCL backend, device: Intel(R)_Core(TM)_i7-10875H_CPU @ 2.30GHz
    [  FAILED  ] MatrixTests.FindBestDiscordsMultipleProfiles (19597 ms)
    [----------] 1 test from MatrixTests (19597 ms total)
    
    [----------] Global test environment tear-down
    [==========] 1 test from 1 test suite ran. (19597 ms total)
    [  PASSED  ] 0 tests.
    [  FAILED  ] 1 test, listed below:
    [  FAILED  ] MatrixTests.FindBestDiscordsMultipleProfiles
    
     1 FAILED TEST
    
    opened by marregui 0
  • Fix broken test due to fltpt precission FeaturesTests.FftAggregated

    Fix broken test due to fltpt precission FeaturesTests.FftAggregated

    74/211 Test  #74: FeaturesTests.FftAggregated ......................................***Failed   11.05 sec
    Running main() from C:\dev\vcpkg\buildtrees\gtest\src\ase-1.10.0-9cde347ce0.clean\googletest\src\gtest_main.cc
    Note: Google Test filter = FeaturesTests.FftAggregated
    [==========] Running 1 test from 1 test suite.
    [----------] Global test environment set-up.
    [----------] 1 test from FeaturesTests
    [ RUN      ] FeaturesTests.FftAggregated
    ←[32m[----------]←[0m CPU backend, device: Intel CPU
    [----------] CUDA backend, device: GeForce_RTX_2060
    ←[32m[----------]←[0m OPENCL backend, device: GeForce_RTX_2060
    ←[32m[----------]←[0m OPENCL backend, device: Intel(R)_UHD_Graphics
    ←[32m[----------]←[0m OPENCL backend, device: Intel(R)_Core(TM)_i7-10875H_CPU @ 2.30GHz
    C:\Users\MiguelArregui\workspace\khiva\test\featuresTest.cpp(481): error: The difference between fft[3] and f4 is 1.1920928955078125e-06, which exceeds EPSILON, where
    fft[3] evaluates to 3.642664909362793,
    f4 evaluates to 3.6426661014556885, and
    EPSILON evaluates to 9.9999999999999995e-07.
    [  FAILED  ] FeaturesTests.FftAggregated (10790 ms)
    [----------] 1 test from FeaturesTests (10790 ms total)
    
    [----------] Global test environment tear-down
    [==========] 1 test from 1 test suite ran. (10790 ms total)
    [  PASSED  ] 0 tests.
    [  FAILED  ] 1 test, listed below:
    [  FAILED  ] FeaturesTests.FftAggregated
    
    1 FAILED TEST
    
    opened by marregui 0
Releases(v0.5.0)
Owner
Shapelets
Accelerated Time Series Analytics
Shapelets
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022