Source code for Zalo AI 2021 submission

Overview

zalo_ltr_2021

Source code for Zalo AI 2021 submission

Solution:

Pipeline

We use the pipepline in the picture below:

Our pipeline is combination of BM25 and Sentence Transfromer. Let us describe our approach briefly:
  • Step 1: We trained a BM25 model for searching similar pair. We used BM25 to create negative sentence pairs for training Sentence Transformer in Step 3.
  • Step 1: We trained Masked Language Model using legal corpus from training data. Our masked languague models are
VinAI/PhoBert-Large
FPTAI/ViBert
  • Step 3: Train Sentence Transformer + Contrative loss with 4 settings:
1. MLM PhoBert Large -> Sentence Transformer 
2. MLM ViBert -> Sentence Transformer
3. MLM PhoBert Large -> Condenser -> Sentence Transformer
4. MLM PhoBert Large -> Co-Condenser -> Sentence Transformer
  • Step 4: Using 4 models from step 3 to generate corresponding hard negative sentences for training round 2 in step 5.
  • Step 5: Training 4 above models round 2.
  • Step 5: Ensemble 4 models obtained from step 5.

Data

Raw data is in zac2021-ltr-data

Create Folder

Create a new folder for generated data for training mkdir generated_data

Train BM 25

To train BM25: python bm25_train.py Use load_docs to save time for later run: python bm25_train.py --load_docs

To evaluate: python bm25_create_pairs.py This step will also create top_k negative pairs from BM25. We choose top_k= 20, 50 Pairs will be saved to: pair_data/

These pairs will be used to train round 1 Sentence Transformer model

Create corpus:

Run python create_corpus.txt This step will create:

  • corpus.txt (for finetune language model)
  • cocondenser_data.json (for finetune CoCondenser model)

Finetune language model using Huggingface

Pretrained model:

  • viBERT: FPTAI/vibert-base-cased
  • vELECTRA: FPTAI/velectra-base-discriminator-cased
  • phobert-base: vinai/phobert-base
  • phobert-large: vinai/phobert-large

$MODEL_NAME= phobert-large $DATA_FILE= corpus.txt $SAVE_DIR= /path/to/your/save/directory

Run the following cmd to train Masked Language Model:

python run_mlm.py \
    --model_name_or_path $MODEL_NAME \
    --train_file $DATA_FILE \
    --do_train \
    --do_eval \
    --output_dir $SAVE_DIR \
    --line_by_line \
    --overwrite_output_dir \
    --save_steps 2000 \
    --num_train_epochs 20 \
    --per_device_eval_batch_size 32 \
    --per_device_train_batch_size 32

Train condenser and cocondenser from language model checkpoint

Original source code here: https://github.com/luyug/Condenser (we modified several lines of code to make it compatible with current version of transformers)

Create data for Condenser:

python helper/create_train.py --tokenizer_name $MODEL_NAME --file $DATA_FILE --save_to $SAVE_CONDENSER \ --max_len $MAX_LENGTH 

$MODEL_NAME=vinai/phobert-large
$MAX_LENGTH=256
$DATA_FILE=../generated_data/corpus.txt
$SAVE_CONDENSER=../generated_data/

$MODEL_NAME checkpoint from finetuned language model

python run_pre_training.py \
  --output_dir $OUTDIR \
  --model_name_or_path $MODEL_NAME \
  --do_train \
  --save_steps 2000 \
  --per_device_train_batch_size $BATCH_SIZE \
  --gradient_accumulation_steps $ACCUMULATION_STEPS \
  --fp16 \
  --warmup_ratio 0.1 \
  --learning_rate 5e-5 \
  --num_train_epochs 8 \
  --overwrite_output_dir \
  --dataloader_num_workers 32 \
  --n_head_layers 2 \
  --skip_from 6 \
  --max_seq_length $MAX_LENGTH \
  --train_dir $SAVE_CONDENSER \
  --weight_decay 0.01 \
  --late_mlm

We use this setting to run Condenser:

python run_pre_training.py   \
    --output_dir saved_model_1/  \
    --model_name_or_path ../Legal_Text_Retrieval/lm/large/checkpoint-30000   \
    --do_train   
    --save_steps 2000   \
    --per_device_train_batch_size 32   \
    --gradient_accumulation_steps 4   \
    --fp16   \
    --warmup_ratio 0.1   \
    --learning_rate 5e-5   \
    --num_train_epochs 8   \
    --overwrite_output_dir   \
    --dataloader_num_workers 32   \
    --n_head_layers 2   \
    --skip_from 6   \
    --max_seq_length 256   \
    --train_dir ../generated_data/   \
    --weight_decay 0.01   \
    --late_mlm

Train cocodenser:

First, we create data for cocodenser

python helper/create_train_co.py \
    --tokenizer vinai/phobert-large \
    --file ../generated_data/cocondenser/corpus.txt.json \
    --save_to data/large_co/corpus.txt.json \

Run the following cmd to train co-condenser model:

python  run_co_pre_training.py   \
    --output_dir saved_model/cocondenser/   \
    --model_name_or_path $CODENSER_CKPT   \
    --do_train   \
    --save_steps 2000   \
    --model_type bert   \
    --per_device_train_batch_size 32   \
    --gradient_accumulation_steps 1   \
    --fp16   \
    --warmup_ratio 0.1   \
    --learning_rate 5e-5   \
    --num_train_epochs 10   \
    --dataloader_drop_last   \
    --overwrite_output_dir   \
    --dataloader_num_workers 32   \
    --n_head_layers 2   \
    --skip_from 6   \
    --max_seq_length 256   \
    --train_dir ../generated_data/cocondenser/   \
    --weight_decay 0.01   \
    --late_mlm  \
    --cache_chunk_size 32 \
    --save_total_limit 1

Train Sentence Transformer

Round 1: using negative pairs of sentence generated from BM25

For each Masked Language Model, we trained a sentence transformer corresponding to it Run the following command to train round 1 of sentence bert model

Note: Use cls_pooling for condenser and cocodenser

python train_sentence_bert.py 
    --pretrained_model /path/to/your/pretrained/mlm/model\
    --max_seq_length 256 \
    --pair_data_path /path/to/your/negative/pairs/data\
    --round 1 \
    --num_val $NUM_VAL\
    --epochs 10\
    --saved_model /path/to/your/save/model/directory\
    --batch_size 32\

here we pick $NUM_VAL is 50 * 20 and 50 * 50 for top 20 and 50 pairs data respectively

Round 2: using hard negative pairs create from Round 1 model

  • Step 1: Run the following cmd to generate hard negative pairs from round 1 model:
python hard_negative_mining.py \
    --model_path /path/to/your/sentence/bert/model\
    --data_path /path/to/the/lagal/corpus/json\
    --save_path /path/to/directory/to/save/neg/pairs\
    --top_k top_k_negative_pair

Here we pick top k is 20 and 50.

  • Use the data generated from step 1 to train round 2 of sentence bert model for each model from round 1: To train round 2, please use the following command:
python train_sentence_bert.py 
    --pretrained_model /path/to/your/pretrained/mlm/model\
    --max_seq_length 256 \
    --pair_data_path /path/to/your/negative/pairs/data\
    --round 2 \
    --num_val $NUM_VAL\
    --epochs 5\
    --saved_model /path/to/your/save/model/directory\
    --batch_size 32\

Tips: Use small learning rate for model convergence

Prediction

For reproducing result.

To get the prediction, we use 4 2-round trained models with mlm pretrained is Large PhoBert, PhoBert-Large-Condenser, Pho-Bert-Large-CoCondenser and viBert-based. Final models and their corresponding weights are below:

  • 1 x PhoBert-Large-Round2: 0.1
  • 1 x Condenser-PhoBert-Large-round2: 0.3
  • 1 x Co-Condenser-PhoBert-Large-round2: 0.4
  • 1 x FPTAI/ViBert-base-round2: 0.2

doc_refers_saved.pkl and legal_dict.json are generated in traning bm25 process and create corpus, respectively. We also provide a file to re-generate it before inference.

python3 create_corpus.py --data zac2021-ltr-data --save_dir generated_data
python3 create_doc_refers.py --raw_data zac2021-ltr-data --save_path generated_data

We also provide embedding vectors which is pre-encoded by ensemble model in encoded_legal_data.pkl. If you want to verified and get the final submission, please run the following command:

python3 predict.py --data /path/to/test/json/data --legal_data generated_data/doc_refers_saved.pkl --precode

If you already have encoded_legal_data.pkl, run the following command:

python3 predict.py --data /path/to/test/json/data --legal_data generated_data/doc_refers_saved.pkl

Just for inference

Run the following command

chmod +x predict.sh
./predict.sh

post-processing techniques:

  • fix typo of nd-cp
  • multiply cos-sim score with score from bm25, we pick score-range = [max-score - 2.6, max-score] and pick top 5 sentences for a question with multiple answers .

Methods used but not work

  • Training Round 3 for Sentence Transformer.
  • Pseudo Label: Improve our single model performace but hurt ensembel preformance.

Contributors:

Thanks our teamates for great works: Dzung Le, Hong Nguyen

[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022