CoaT: Co-Scale Conv-Attentional Image Transformers

Related tags

Deep LearningCoaT
Overview

CoaT: Co-Scale Conv-Attentional Image Transformers

Introduction

This repository contains the official code and pretrained models for CoaT: Co-Scale Conv-Attentional Image Transformers. It introduces (1) a co-scale mechanism to realize fine-to-coarse, coarse-to-fine and cross-scale attention modeling and (2) an efficient conv-attention module to realize relative position encoding in the factorized attention.

Model Accuracy

For more details, please refer to CoaT: Co-Scale Conv-Attentional Image Transformers by Weijian Xu*, Yifan Xu*, Tyler Chang, and Zhuowen Tu.

Changelog

04/23/2021: Pre-trained checkpoint for CoaT-Lite Mini is released.
04/22/2021: Code and pre-trained checkpoint for CoaT-Lite Tiny are released.

Usage

Environment Preparation

  1. Set up a new conda environment and activate it.

    # Create an environment with Python 3.8.
    conda create -n coat python==3.8
    conda activate coat
  2. Install required packages.

    # Install PyTorch 1.7.1 w/ CUDA 11.0.
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    
    # Install timm 0.3.2.
    pip install timm==0.3.2
    
    # Install einops.
    pip install einops

Code and Dataset Preparation

  1. Clone the repo.

    git clone https://github.com/mlpc-ucsd/CoaT
    cd CoaT
  2. Download ImageNet dataset (ILSVRC 2012) and extract.

    # Create dataset folder.
    mkdir -p ./data/ImageNet
    
    # Download the dataset (not shown here) and copy the files (assume the download path is in $DATASET_PATH).
    cp $DATASET_PATH/ILSVRC2012_img_train.tar $DATASET_PATH/ILSVRC2012_img_val.tar $DATASET_PATH/ILSVRC2012_devkit_t12.tar.gz ./data/ImageNet
    
    # Extract the dataset.
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='train')"
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='val')"
    # After the extraction, you should observe `train` and `val` folders under ./data/ImageNet.

Evaluate Pre-trained Checkpoint

We provide the CoaT checkpoints pre-trained on the ImageNet dataset.

Name [email protected] [email protected] #Params SHA-256 (first 8 chars) URL
CoaT-Lite Tiny 77.5 93.8 5.7M e88e96b0 model, log
CoaT-Lite Mini 79.1 94.5 11M 6b4a8ae5 model, log

The following commands provide an example (CoaT-Lite Tiny) to evaluate the pre-trained checkpoint.

# Download the pretrained checkpoint.
mkdir -p ./output/pretrained
wget http://vcl.ucsd.edu/coat/pretrained/coat_lite_tiny_e88e96b0.pth -P ./output/pretrained
sha256sum ./output/pretrained/coat_lite_tiny_e88e96b0.pth  # Make sure it matches the SHA-256 hash (first 8 characters) in the table.

# Evaluate.
# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_pretrained ./output/pretrained/coat_lite_tiny_e88e96b0.pth
# It should output results similar to "[email protected] 77.504 [email protected] 93.814" at very last.

Train

The following commands provide an example (CoaT-Lite Tiny, 8-GPU) to train the CoaT model.

# Usage: bash ./scripts/train.sh [model name] [output folder]
bash ./scripts/train.sh coat_lite_tiny coat_lite_tiny

Evaluate

The following commands provide an example (CoaT-Lite Tiny) to evaluate the checkpoint after training.

# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_eval ./output/coat_lite_tiny/checkpoints/checkpoint0299.pth

Citation

@misc{xu2021coscale,
      title={Co-Scale Conv-Attentional Image Transformers}, 
      author={Weijian Xu and Yifan Xu and Tyler Chang and Zhuowen Tu},
      year={2021},
      eprint={2104.06399},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This repository is released under the Apache License 2.0. License can be found in LICENSE file.

Acknowledgment

Thanks to DeiT and pytorch-image-models for a clear and data-efficient implementation of ViT. Thanks to lucidrains' implementation of Lambda Networks and CPVT.

Owner
mlpc-ucsd
mlpc-ucsd
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022