Official implementation of the paper: "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech"

Related tags

Deep LearningLDNet
Overview

LDNet

Author: Wen-Chin Huang (Nagoya University) Email: [email protected]

This is the official implementation of the paper "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech". This is a model that takes an input synthetic speech sample and outputs the simulated human rating.

Results

Usage

Currently we support only the VCC2018 dataset. We plan to release the BVCC dataset in the near future.

Requirements

  • PyTorch 1.9 (versions not too old should be fine.)
  • librosa
  • pandas
  • h5py
  • scipy
  • matplotlib
  • tqdm

Data preparation

# Download the VCC2018 dataset.
cd data
./download.sh vcc2018

Training

We provide configs that correspond to the following rows in the above figure:

  • (a): MBNet.yaml
  • (d): LDNet_MobileNetV3_RNN_5e-3.yaml
  • (e): LDNet_MobileNetV3_FFN_1e-3.yaml
  • (f): LDNet-MN_MobileNetV3_RNN_FFN_1e-3_lamb4.yaml
  • (g): LDNet-ML_MobileNetV3_FFN_1e-3.yaml
python train.py --config configs/<config_name> --tag <tag_name>

By default, the experimental results will be stored in exp/<tag_name>, including:

  • model-<steps>.pt: model checkpoints.
  • config.yml: the config file.
  • idtable.pkl: the dictionary that maps listener to ID.
  • training_<inference_mode>: the validation results generated along the training. This file is useful for model selection. Note that the inference_mode in the config file decides what mode is used during validation in the training.

There are some arguments that can be changed:

  • --exp_dir: The directory for storing the experimental results.
  • --data_dir: The data directory. Default is data/vcc2018.
  • seed: random seed.
  • update_freq: This is very important. See below.

Batch size and update_freq

By default, all LDNet models are trained with a batch size of 60. In my experiments, I used a single NVIDIA GeForce RTX 3090 with 24GB mdemory for training. I cannot fit the whole model in the GPU, so I accumulate gradients for update_freq forward passes and do one backward update. Before training, please check the train_batch_size in the config file, and set update_freq properly. For instance, in configs/LDNet_MobileNetV3_FFN_1e-3.yaml the train_batch_size is 20, so update_freq should be set to 3.

Inference

python inference.py --tag LDNet-ML_MobileNetV3_FFN_1e-3 --mode mean_listener

Use mode to specify which inference mode to use. Choices are: mean_net, all_listeners and mean_listener. By default, all checkpoints in the exp directory will be evaluated.

There are some arguments that can be changed:

  • ep: if you want to evaluate one model checkpoint, say, model-10000.pt, then simply pass --ep 10000.
  • start_ep: if you want to evaluate model checkpoints after a certain steps, say, 10000 steps later, then simply pass --start_ep 10000.

There are some files you can inspect after the evaluation:

  • <dataset_name>_<inference_mode>.csv: the validation and test set results.
  • <dataset_name>_<inference_mode>_<test/valid>/: figures that visualize the prediction distributions, including;
    • <ep>_distribution.png: distribution over the score range (1-5).
    • <ep>_utt_scatter_plot_utt: utterance-wise scatter plot of the ground truth and the predicted scores.
    • <ep>_sys_scatter_plot_utt: system-wise scatter plot of the ground truth and the predicted scores.

Acknowledgement

This repository inherits from this great unofficial MBNet implementation.

Citation

If you find this recipe useful, please consider citing following paper:

@article{huang2021ldnet,
  title={LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech},
  author={Huang, Wen-Chin and Cooper, Erica and Yamagishi, Junichi and Toda, Tomoki},
  journal={arXiv preprint arXiv:2110.09103},
  year={2021}
}
Owner
Wen-Chin Huang (unilight)
Ph.D. candidate at Nagoya University, Japan. M.S. @ Nagoya University. B.S. @ National Taiwan University. RA at IIS, Academia Sinica, Taiwan.
Wen-Chin Huang (unilight)
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023