Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

Overview

DeepXML

Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents


Architectures and algorithms

DeepXML supports multiple feature architectures such as Bag-of-embedding/Astec, RNN, CNN etc. The code uses a json file to construct the feature architecture. Features could be computed using following encoders:

  • Bag-of-embedding/Astec: As used in the DeepXML paper [1].
  • RNN: RNN based sequential models. Support for RNN, GRU, and LSTM.
  • XML-CNN: CNN architecture as proposed in the XML-CNN paper [4].

Best Practices for features creation


  • Adding sub-words on top of unigrams to the vocabulary can help in training more accurate embeddings and classifiers.

Setting up


Expected directory structure

+-- 
   
    
|  +-- programs
|  |  +-- deepxml
|  |    +-- deepxml
|  +-- data
|    +-- 
    
     
|  +-- models
|  +-- results


    
   

Download data for Astec

* Download the (zipped file) BoW features from XML repository.  
* Extract the zipped file into data directory. 
* The following files should be available in 
   
    /data/
    
      for new datasets (ignore the next step)
    - trn_X_Xf.txt
    - trn_X_Y.txt
    - tst_X_Xf.txt
    - tst_X_Y.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy
* The following files should be available in 
     
      /data/
      
        if the dataset is in old format (please refer to next step to convert the data to new format)
    - train.txt
    - test.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy 

      
     
    
   

Convert to new data format

# A perl script is provided (in deepxml/tools) to convert the data into new format as expected by Astec
# Either set the $data_dir variable to the data directory of a particular dataset or replace it with the path
perl convert_format.pl $data_dir/train.txt $data_dir/trn_X_Xf.txt $data_dir/trn_X_Y.txt
perl convert_format.pl $data_dir/test.txt $data_dir/tst_X_Xf.txt $data_dir/tst_X_Y.txt

Example use cases


A single learner with DeepXML framework

The DeepXML framework can be utilized as follows. A json file is used to specify architecture and other arguments. Please refer to the full documentation below for more details.

./run_main.sh 0 DeepXML EURLex-4K 0 108

An ensemble of multiple learners with DeepXML framework

An ensemble can be trained as follows. A json file is used to specify architecture and other arguments.

./run_main.sh 0 DeepXML EURLex-4K 0 108,666,786

Full Documentation

./run_main.sh 
    
     
      
       
       
         * gpu_id: Run the program on this GPU. * framework - DeepXML: Divides the XML problems in 4 modules as proposed in the paper. - DeepXML-OVA: Train the architecture in 1-vs-all fashion [4][5], i.e., loss is computed for each label in each iteration. - DeepXML-ANNS: Train the architecture using a label shortlist. Support is available for a fixed graph or periodic training of the ANNS graph. * dataset - Name of the dataset. - Astec expects the following files in 
        
         /data/
         
           - trn_X_Xf.txt - trn_X_Y.txt - tst_X_Xf.txt - tst_X_Y.txt - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy - You can set the 'embedding_dims' in config file to switch between 300d and 512d embeddings. * version - different runs could be managed by version and seed. - models and results are stored with this argument. * seed - seed value as used by numpy and PyTorch. - an ensemble is learned if multiple comma separated values are passed. 
         
        
       
      
     
    
   

Notes

* Other file formats such as npy, npz, pickle are also supported.
* Initializing with token embeddings (computed from FastText) leads to noticible accuracy gain in Astec. Please ensure that the token embedding file is available in data directory, if 'init=token_embeddings', otherwise it'll throw an error.
* Config files are made available in deepxml/configs/
   
    /
    
      for datasets in XC repository. You can use them when trying out Astec/DeepXML on new datasets.
* We conducted our experiments on a 24-core Intel Xeon 2.6 GHz machine with 440GB RAM with a single Nvidia P40 GPU. 128GB memory should suffice for most datasets.
* Astec make use of CPU (mainly for nmslib) as well as GPU. 

    
   

Cite as

@InProceedings{Dahiya21,
    author = "Dahiya, K. and Saini, D. and Mittal, A. and Shaw, A. and Dave, K. and Soni, A. and Jain, H. and Agarwal, S. and Varma, M.",
    title = "DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents",
    booktitle = "Proceedings of the ACM International Conference on Web Search and Data Mining",
    month = "March",
    year = "2021"
}

YOU MAY ALSO LIKE

References


[1] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma. Deepxml: A deep extreme multi-label learning framework applied to short text documents. In WSDM, 2021.

[2] pyxclib: https://github.com/kunaldahiya/pyxclib

[3] H. Jain, V. Balasubramanian, B. Chunduri and M. Varma, Slice: Scalable linear extreme classifiers trained on 100 million labels for related searches, In WSDM 2019.

[4] J. Liu, W.-C. Chang, Y. Wu and Y. Yang, XML-CNN: Deep Learning for Extreme Multi-label Text Classification, In SIGIR 2017.

[5] R. Babbar, and B. Schölkopf, DiSMEC - Distributed Sparse Machines for Extreme Multi-label Classification In WSDM, 2017.

[6] P., Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information. In TACL, 2017.

Owner
Extreme Classification
Extreme Classification
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022