A rule-based log analyzer & filter

Overview

Flog

一个根据规则集来处理文本日志的工具。

前言

在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。

日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。

以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决定写这个工具,根据规则自动分析日志、剔除垃圾信息。

使用方法

安装

python setup.py install

基础用法

flog -r rules.yaml /path/to/1.log /path/to/2.log /path/to/3.log -o /path/to/filtered.log

其中:

  • rules.yaml是规则文件
  • /path/to/x.log是原始的日志文件,支持一次输入多个日志文件。
  • /path/to/filtered.log是过滤后的日志文件,如果不指定文件名(直接一个-o),会自动生成一个。

如果不需要过滤日志内容,只需显示分析结果,可以直接:

flog -r rules.yaml /path/to/your.log

规则语法

基础

name: Rule Name #规则集名称
patterns: #规则列表
  # 单行模式,如果匹配到 ^Hello,就输出 Match Hello
  - match: "^Hello"
    message: "Match Hello"
    action: bypass #保留此条日志(会输出到-o指定的文件中)
    
  # 多行模式,以^Hello开头,以^End结束,输出 Match Hello to End,并丢弃此条日志
  - start: "^Hello"
    end: "^End"
    message: "Match Hello to End"
    action: drop

  - start: "Start"
    start_message: "Match Start" #匹配开始时显示的信息
    end: "End"
    end_messagee: "Match End" #结束时显示的信息

纯过滤模式

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
  - start: "^Hello" #多行模式,删除从Hello到End中间的所有内容
    end: "^End"

过滤日志内容,并输出信息

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
    message: "Match Hello"
    action: drop #删除此行日志

规则嵌套

仅多行模式支持规则嵌套。

name: Rule
patterns:
  - start: "^Response.*{$"
    end: "^}"
    patterns:
      - match: "username = (.*)"
        message: "Current user: {{ capture[0] }}"

输入:

Login Response {
  username = zorro
  userid = 123456
}

输出:

Current user: zorro

action

action字段主要用于控制是否过滤此条日志,仅在指定 -o 参数后生效。 取值范围:【dropbypass】。

为了简化纯过滤类型规则的书写,action默认值的规则如下:

  • 如果规则中包含messagestart_messageend_message字段,action默认为bypass,即输出到文件中。
  • 如果规则中不包含message相关字段,action默认为drop,变成一条纯过滤规则。

message

message 字段用于在标准输出显示信息,并且支持 Jinja 模版语法来自定义输出信息内容,通过它可以实现一些简单的日志分析功能。

目前支持的参数有:

  • lines: (多行模式下)匹配到的所有行
  • content: 匹配到的日志内容
  • captures: 正则表达式(match/start/end)捕获的内容

例如:

name: Rule Name
patterns:
  - match: "^Hello (.*)"
    message: "Match {{captures[0]}}"

如果遇到:"Hello lilei",则会在终端输出"Match lilei"

context

可以把日志中频繁出现的正则提炼出来,放到context字段下,避免复制粘贴多次,例如:

name: Rule Name

context:
  timestamp: "\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}.\\d{3}"
patterns:
  - match: "hello ([^:]*):"
    message: "{{ timestamp }} - {{ captures[0] }}"

输入:2022-04-08 16:52:37.152 hello world: this is a test message
输出:2022-04-08 16:52:37.152 - world

高亮

内置了一些 Jinjafilter,可以在终端高亮输出结果,目前包含:

black, red, green, yellow, blue, purple, cyan, white, bold, light, italic, underline, blink, reverse, strike

例如:

patterns:
  - match: "Error: (.*)"
    message: "{{ captures[0] | red }}"

输入:Error: file not found
输出:file not found

include

支持引入其它规则文件,例如:

name: Rule
include: base #引入同级目录下的 base.yaml 或 base.yml

include支持引入一个或多个文件,例如:

name: Rule
include:
  - base
  - ../base
  - base.yaml
  - base/base1
  - base/base2.yaml
  - ../base.yaml
  - /usr/etc/rules/base.yml

contextpatterns会按照引用顺序依次合并,如果有同名的context,后面的会替换之前的。

License

MIT

Owner
上山打老虎
专业造工具
上山打老虎
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023