The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Overview

Generative Modeling with Optimal Transport Maps

The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022. It focuses on Optimal Transport Modeling (OTM) in ambient space, e.g. spaces of high-dimensional images. While analogous approaches consider OT maps in the latent space of an autoencoder, this paper focuses on fitting an OT map directly between noise and ambient space. The method is evaluated on generative modeling and unpaired image restoration tasks. In particular, large-scale computer vision problems, such as denoising, colorization, and inpainting are considered in unpaired image restoration. The overall pipeline of OT as generative map and OT as cost of generative model is given below.

Latent Space Optimal Transport

Our method is different from the prevalent approach of OT in the latent space shown below.

Ambient Space Mass Transport

The scheme of our approach for learning OT maps between unequal dimensions.

Prerequisites

The implementation is GPU-based. Single GPU (V100) is enough to run each experiment. Tested with torch==1.4.0 torchvision==0.5.0. To reproduce the reported results, consider using the exact version of PyTorch and its required dependencies as other versions might be incompatible.

Repository structure

All the experiments are issued in the form of pretty self-explanatory python codes.

Main Experiments

Execute the following commands in the source folder.

Training

  • python otm_mnist_32x22.py --train 1 -- OTM between noise and MNIST, 32x32, Grayscale;
  • python otm_cifar_32x32.py --train 1 -- OTM between noise and CIFAR10, 32x32, RGB;
  • python otm_celeba_64x64.py --train 1 -- OTM between noise and CelebA, 64x64, RGB;
  • python otm_celeba_denoise_64x64.py --train 1 -- OTM for unpaired denoising on CelebA, 64x64, RGB;
  • python otm_celeba_colorization_64x64.py --train 1 -- OTM for unpaired colorization on CelebA, 64x64, RGB;
  • python otm_celeba_inpaint_64x64.py --train 1 -- OTM unpaired inpainting on CelebA, 64x64, RGB.

Run inference with the best iteration.

Inference

  • python otm_mnist_32x32.py --inference 1 --init_iter 100000
  • python otm_cifar_32x32.py --inference 1 --init_iter 100000
  • python otm_celeba_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_denoise_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_colorization_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_inpaint_64x64.py --inference 1 --init_iter 100000

Toy Experiments in 2D

  • source/toy/OTM-GO MoG.ipynb -- Mixture of 8 Gaussians;
  • source/toy/OTM-GO Moons.ipynb -- Two Moons;
  • source/toy/OTM-GO Concentric Circles.ipynb -- Concentric Circles;
  • source/toy/OTM-GO S Curve.ipynb -- S Curve;
  • source/toy/OTM-GO Swirl.ipynb -- Swirl.

Refer to Credit Section for baselines.

Results

Optimal transport modeling between high-dimensional noise and ambient space.

Randomly generated samples

Optimal transport modeling for unpaired image restoration tasks.

Following is the experimental setup that is considered for unpaired image restoration.

OTM for image denoising on test C part of CelebA, 64 Ɨ 64.

OTM for image colorization on test C part of CelebA, 64 Ɨ 64.

OTM for image inpainting on test C part of CelebA, 64 Ɨ 64.

Optimal transport modeling for toy examples.

OTM in low-dimensional space, 2D.

Credits

Owner
Litu Rout
I am broadly interested in Optimization, Statistical Learning Theory, Interactive Machine Learning, and Optimal Transport.
Litu Rout
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

Iā€˜m X 3 Nov 27, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
šŸ’› Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021