This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Overview

Swin Transformer

This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8.

Introduction(Quoted from the Original Project )

Swin Transformer original github repo (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

Setup

  1. Please refer to the Install session for conda environment build.
  2. Please refer to the Data preparation session to prepare Imagenet-1K.
  3. Install the TensorRT, now we choose the TensorRT 8.2 GA(8.2.1.8) as the test version.

Code Structure

Focus on the modifications and additions.

.
├── export.py                  # Export the PyTorch model to ONNX format
├── get_started.md            
├── main.py
├── models
│   ├── build.py
│   ├── __init__.py
│   ├── swin_mlp.py
│   └── swin_transformer.py    # Build the model, modified to export the onnx and build the TensorRT engine
├── README.md
├── trt                        # Directory for TensorRT's engine evaluation and visualization.
│   ├── engine.py
│   ├── eval_trt.py            # Evaluate the tensorRT engine's accuary.
│   ├── onnxrt_eval.py         # Run the onnx model, generate the results, just for debugging
├── utils.py
└── weights

Export to ONNX and Build TensorRT Engine

You need to pay attention to the two modification below.

  1. Exporting the operator roll to ONNX opset version 9 is not supported. A: Please refer to torch/onnx/symbolic_opset9.py, add the support of exporting torch.roll.

  2. Node (Concat_264) Op (Concat) [ShapeInferenceError] All inputs to Concat must have same rank.
    A: Please refer to the modifications in models/swin_transformer.py. We use the input_resolution and window_size to compute the nW.

       if mask is not None:
         nW = int(self.input_resolution[0]*self.input_resolution[1]/self.window_size[0]/self.window_size[1])
         #nW = mask.shape[0]
         #print('nW: ', nW)
         attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
         attn = attn.view(-1, self.num_heads, N, N)
         attn = self.softmax(attn)

Accuray Test Results on ImageNet-1K Validation Dataset

  1. Download the Swin-T pretrained model from Model Zoo. Evaluate the accuracy of the Pytorch pretrained model.

    $ python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k
  2. export.py exports a pytorch model to onnx format.

    $ python export.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k --batch-size 16
  3. Build the TensorRT engine using trtexec.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine --workspace=4096

    Add the --fp16 or --best tag to build the corresponding fp16 or int8 model. Take fp16 as an example.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --fp16 --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16_fp16.engine --workspace=4096

    You can use the trtexec to test the throughput of the TensorRT engine.

    $ trtexec --loadEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine
  4. trt/eval_trt.py aims to evalute the accuracy of the TensorRT engine.

$ python trt/eval_trt.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224_batch16.engine --data-path ../imagenet_1k --batch-size 16
  1. trt/onnxrt_eval.py aims to evalute the accuracy of the Onnx model, just for debug.
    $ python trt/onnxrt_eval.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.onnx --data-path ../imagenet_1k --batch-size 16
SwinTransformer(T4) [email protected] Notes
PyTorch Pretrained Model 81.160
TensorRT Engine(FP32) 81.156
TensorRT Engine(FP16) - TensorRT 8.0.3.4: 81.156% vs TensorRT 8.2.1.8: 72.768%

Notes: Reported a nvbug for the FP16 accuracy issue, please refer to nvbug 3464358.

Speed Test of TensorRT engine(T4)

SwinTransformer(T4) FP32 FP16 INT8
batchsize=1 245.388 qps 510.072 qps 514.707 qps
batchsize=16 316.8624 qps 804.112 qps 804.1072 qps
batchsize=64 329.13984 qps 833.4208 qps 849.5168 qps
batchsize=256 331.9808 qps 844.10752 qps 840.33024 qps

Analysis: Compared with FP16, INT8 does not speed up at present. The main reason is that, for the Transformer structure, most of the calculations are processed by Myelin. Currently Myelin does not support the PTQ path, so the current test results are expected.
Attached the int8 and fp16 engine layer information with batchsize=128 on T4.

Build with int8 precision:

[12/04/2021-06:34:17] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1025026069226666066, Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)] -> 191[Int8(128,96,56,56)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, 191[Int8(128,96,56,56)] -> Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)] -> (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)]
Layer(CaskConvolution): Gemm_2128, Tactic: -1838109259315759592, (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)] -> (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle], Tactic: 0, (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)] -> Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)]
Layer(NoOp): (Unnamed Layer* 4183) [Shuffle], Tactic: 0, Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)] -> output_0[Float(128,1000)]

Build with fp16 precision:

[12/04/2021-06:44:31] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1579845938601132607, Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)] -> 191[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, 191[Half(128,96,56,56)] -> Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)]
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)] -> output_0[Float(128,1000)]

Todo

After the FP16 nvbug 3464358 solved, will do the QAT optimization.

Owner
maggiez
maggiez
maggiez
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022