chaii - hindi & tamil question answering

Overview

chaii - hindi & tamil question answering

This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The competition can be found here: https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering

Datasets required

Download squadv2 data from https://rajpurkar.github.io/SQuAD-explorer/

$ mkdir input && cd input
$ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json
$ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json

Download tydiqa data in the input folder:

$ wget https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-train.json
$ wget https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-dev.json

Download data from https://www.kaggle.com/tkm2261/google-translated-squad20-to-hindi-and-tamil to input folder

Download original competition dataset to input folder: https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/data

Download outputs of this kernel: https://www.kaggle.com/rhtsingh/external-data-mlqa-xquad-preprocessing/ to input folder

Now, you have all the data needed to train the model. We will first create folds and munge the data a bit.

To create folds, please use the following command:

$ cd src
$ python create_folds.py

To munge the datasets and prepare for training, please run the following command:

$ cd src
$ python munge_data.py

Training

There are two GPU models and one model needs TPUs.

GPU models: XLM-Roberta & Rembert TPU model: Muril-Large

XLM-Roberta:

$ cd src
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 0
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 1
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 2
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 3
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 4

Rembert:

$ cd src
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 0
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 1
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 2
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 3
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 4

Muril-Large

** please note that training this model needs TPUs **

$ cd src
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 0
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 1
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 2
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 3
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 4

Inference

After training all the models, the outputs were pushed to Kaggle Datasets.

The final model datasets can be found here:

- https://www.kaggle.com/abhishek/xlmrobertalargewithsquadv2tydiqasqdtrans384f
- https://www.kaggle.com/ubamba98/modelsrembertwithsquadv2tydiqa384
- https://www.kaggle.com/ubamba98/murillargecasedchaii

And the final inference kernel can be found here: https://www.kaggle.com/abhishek/chaii-xlm-roberta-x-muril-x-rembert-score-based

Solution writeup: https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/discussion/288049

Owner
abhishek thakur
Kaggle: www.kaggle.com/abhishek
abhishek thakur
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
A curated list of efficient attention modules

awesome-fast-attention A curated list of efficient attention modules

Sepehr Sameni 891 Dec 22, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023