MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Related tags

Deep LearningOctConv
Overview

Octave Convolution

MXNet implementation for:

Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

ImageNet

Ablation

  • Loss: Softmax
  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Symbol API

example

Model baseline alpha = 0.125 alpha = 0.25 alpha = 0.5 alpha = 0.75
DenseNet-121 75.4 / 92.7 76.1 / 93.0 75.9 / 93.1 -- --
ResNet-26 73.2 / 91.3 75.8 / 92.6 76.1 / 92.6 75.5 / 92.5 74.6 / 92.1
ResNet-50 77.0 / 93.4 78.2 / 93.9 78.0 / 93.8 77.4 / 93.6 76.7 / 93.0
SE-ResNet-50 77.6 / 93.6 78.7 / 94.1 78.4 / 94.0 77.9 / 93.8 77.4 / 93.5
ResNeXt-50 78.4 / 94.0 -- 78.8 / 94.2 78.4 / 94.0 77.5 / 93.6
ResNet-101 78.5 / 94.1 79.2 / 94.4 79.2 / 94.4 78.7 / 94.1 --
ResNeXt-101 79.4 / 94.6 -- 79.6 / 94.5 78.9 / 94.4 --
ResNet-200 79.6 / 94.7 80.0 / 94.9 79.8 / 94.8 79.5 / 94.7 --

Note:

  • Top-1 / Top-5, single center crop accuracy is shown in the table. (testing script)
  • All residual networks in ablation study adopt pre-actice version[1] for convenience.

Others

  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Gluon API
Model alpha label smoothing[2] mixup[3] #Params #FLOPs Top1 / Top5
0.75 MobileNet (v1) .375 2.6 M 213 M 70.5 / 89.5
1.0 MobileNet (v1) .5 4.2 M 321 M 72.5 / 90.6
1.0 MobileNet (v2) .375 Yes 3.5 M 256 M 72.0 / 90.7
1.125 MobileNet (v2) .5 Yes 4.2 M 295 M 73.0 / 91.2
Oct-ResNet-152 .125 Yes Yes 60.2 M 10.9 G 81.4 / 95.4
Oct-ResNet-152 + SE .125 Yes Yes 66.8 M 10.9 G 81.6 / 95.7

Citation

@article{chen2019drop,
  title={Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution},
  author={Chen, Yunpeng and Fan, Haoqi and Xu, Bing and Yan, Zhicheng and Kalantidis, Yannis and Rohrbach, Marcus and Yan, Shuicheng and Feng, Jiashi},
  journal={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

Third-party Implementations

Acknowledgement

  • Thanks MXNet, Gluon-CV and TVM!
  • Thanks @Ldpe2G for sharing the code for calculating the #FLOPs (link)
  • Thanks Min Lin (Mila), Xin Zhao (Qihoo Inc.), Tao Wang (NUS) for helpful discussions on the code development.

Reference

[1] He K, et al "Identity Mappings in Deep Residual Networks".

[2] Christian S, et al "Rethinking the Inception Architecture for Computer Vision"

[3] Zhang H, et al. "mixup: Beyond empirical risk minimization.".

License

The code and the models are MIT licensed, as found in the LICENSE file.

Owner
Meta Research
Meta Research
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023