A 3D sparse LBM solver implemented using Taichi

Overview

taichi_LBM3D

Background

Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure implemented using Taichi programming language, which is designed for porous medium flow simulation. Taking advantage of Taichi's computing structure, Taichi_LBM3D can be employed on shared-memory multi-core CPUs or massively parallel GPUs (OpenGL and CUDA). The code is around 400 lines, extensible and intuitive to understand.

Installation

This solver is developed using Taichi programming language (a python embedded programming language), install Taichi is required, by python3 -m pip install taichi.

Pyevtk is required for export simualtion result for visualization in Paraview, install Pyevtk by pip install pyevtk

Usage

There are several place for users to modify to fit their problems:

set computing backend

First the computing backend should be specified by ti.init(arch=ti.cpu) using parallel CPU backend, or by ti.init(arch=ti.gpu) to use OpenGL or CUDA(is available) as computing backend

set input geometry

LBM uses uniform mesh, the geometry is import as a ASCII file with 0 and 1, where 0 represent fluid point and 1 represent solid point. They are stored in format:

for k in range(nz)
  for j in range(ny)
    for i in range(nx)
      geometry[i,j,k]

You can specify the input file at: solid_np = init_geo('./img_ftb131.txt')

For two phase solver, a two phase distribution input file is also requred. This file is composed of -1 and 1 representing phase 1 and 2 respectively

set geometry size

Set geometry input file size here: nx,ny,nz = 131,131,131

set external force

Set expernal force applied on the fluid here: fx,fy,fz = 0.0e-6,0.0,0.0

set boundary conditions

There are three boundary conditions used in this code: Periodic boundary condition, fix pressure boundary condition, and fix velocity boundary condition We use the left side of X direction as an example: bc_x_left, rho_bcxl, vx_bcxl, vy_bcxl, vz_bcxl = 1, 1.0, 0.0e-5, 0.0, 0.0 set boundary condition type in bc_x_left; 0=periodic boundary condition, 1 = fix pressure boundary condition, 2 = fix velocity boundary condition if bc_x_left == 1 is select, then the desired pressure on the left side of X direction need to be given in rho_bcxl if bc_x_left == 2 is select, then the desired velocity on the left side of X direction need to be given in vx_bcxl, vy_bcxl, vz_bcxl

The same rules applied to the other five sides

set viscosity

Viscosity is set in niu = 0.1 for single phase solver

niu_l = 0.05
niu_g = 0.2

for two phase solver, niu_l for liquid phase, niu_g for phase 2

Additional parameters for two phase solver
  • Contact angle of the solid surface can be specified in psi_solid = 0.7 this value is the cosine of the desired contact angle, so the value is between -1 and 1
  • Interfical tension of two phases is set in CapA = 0.005
  • Boundary condition for the phase setting: bc_psi_x_left, psi_x_left = 1, -1.0 bc_psi_x_left = 0 for periodic boundary for the phase field, 1 = constant phase field value boundary. If bc_psi_x_left is set as 1, then the next parameter is desired constant phase for this boundary: psi_x_left should be set as -1.0 or 1.0 for phase 1 or phase 2 respectively.

All the quantities are in lattice units

Examples (Direct Numerical Simulation)

Flow over a vehicle: inertia dominated

image image

Single phase flow in a sandstone (Sandstone geometry is build from Micro-CT images at 7.5 microns): viscous dominated

image

Urban air flow: inertia dominated

image

Two Phase flow: oil (non-wetting phase) into a ketton carbonate rock saturated with water (wetting phase): capillary dominated

Alt text

Authors

Jianhui Yang @yjhp1016 Liang Yang @ly16302

License

MIT

Owner
Jianhui Yang
Researcher in CFD, porous medium flow and data science
Jianhui Yang
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022