Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

Overview

TTNet-Pytorch

python-image pytorch-image

The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis"
An introduction of the project could be found here (from the authors)


Demo

demo

1. Features

  • Ball detection global stage

  • Ball detection local stage (refinement)

  • Events Spotting detection (Bounce and Net hit)

  • Semantic Segmentation (Human, table, and scoreboard)

  • Multi-Task learning

  • Distributed Data Parallel Training

  • Enable/Disable modules in the TTNet model

  • Smooth labeling for event spotting

  • TensorboardX

  • (Update 2020.06.23): Training much faster, achieve > 120 FPS in the inference phase on a single GPU (GTX1080Ti).

  • (Update 2020.07.03): The implementation could achieve comparative results with the reported results in the TTNet paper.

  • (Update 2020.07.06): There are several limitations of the TTNet Paper (hints: Loss function, input size, and 2 more). I have implemented the task with a new approach and a new model. Now the new model could achieve:

    • > 130FPS inference,
    • ~0.96 IoU score for the segmentation task
    • < 4 pixels (in the full HD resolution (1920x1080)) of Root Mean Square Error (RMSE) for the ball detection task
    • ~97% percentage of correction events (PCE) and smooth PCE (SPCE).

2. Getting Started

Requirement

pip install -U -r requirement.txt

You will also need PyTurboJPEG:

$ sudo apt-get install libturbojpeg
...
$ pip install PyTurboJPEG
...

Other instruction for setting up virtual environments is here

2.1. Preparing the dataset

The instruction for the dataset preparation is here

2.2. Model & Input tensors

TTNet model architecture:

architecture

Input tensor structure

input tensor

2.3. How to run

2.3.1. Training

2.3.1.1. Single machine, single gpu
python main.py --gpu_idx 0

By default (as the above command), there are 4 modules in the TTNet model: global stage, local stage, event spotting, segmentation. You can disable one of the modules, except the global stage module.
An important note is if you disable the local stage module, the event spotting module will be also disabled.

  • You can disable the segmentation stage:
python main.py --gpu_idx 0 --no_seg
  • You can disable the event spotting module:
python main.py --gpu_idx 0 --no_event
  • You can disable the local stage, event spotting, segmentation modules:
python main.py --gpu_idx 0 --no_local --no_seg --no_event
2.3.1.2. Multi-processing Distributed Data Parallel Training

We should always use the nccl backend for multi-processing distributed training since it currently provides the best distributed training performance.

  • Single machine (node), multiple GPUs
python main.py --dist-url 'tcp://127.0.0.1:29500' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0
  • Two machines (two nodes), multiple GPUs

First machine

python main.py --dist-url 'tcp://IP_OF_NODE1:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 0

Second machine

python main.py --dist-url 'tcp://IP_OF_NODE2:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 1

2.3.2. Training stratergy

The performance of the TTNet strongly depends on the global stage for ball detection. Hence, It's necessary to train the global ball stage module of the TTNet model first.

  • 1st phase: Train the global and segmentation modules with 30 epochs
./train_1st_phase.sh
  • 2nd phase: Load the trained weights to the global and the segmentation part, initialize the weight of the local stage with the weights of the global stage. In this phase, we train and just update weights of the local and the event modules. (30 epochs)
./train_2nd_phase.sh
  • 3rd phase: Fine tune all modules. Train the network with only 30 epochs
./train_3rd_phase.sh

2.3.3. Visualizing training progress

The Tensorboard was used to save loss values on the training set and the validation set. Execute the below command on the working terminal:

    cd logs/<task directory>/tensorboard/
    tensorboard --logdir=./

Then open the web browser and go to: http://localhost:6006/

2.3.4. Evaluation

The thresholds of the segmentation and event spotting tasks could be set in test.sh bash shell scripts.

./test_3rd_phase.sh

2.3.5. Demo:

Run a demonstration with an input video:

./demo.sh

Contact

If you think this work is useful, please give me a star! If you find any errors or have any suggestions, please contact me. Thank you!

Email: [email protected]

Citation

@article{TTNet,
  author = {Roman Voeikov, Nikolay Falaleev, Ruslan Baikulov},
  title = {TTNet: Real-time temporal and spatial video analysis of table tennis},
  year = {2020},
  conference = {CVPR 2020},
}

Usage

usage: main.py [-h] [--seed SEED] [--saved_fn FN] [-a ARCH] [--dropout_p P]
               [--multitask_learning] [--no_local] [--no_event] [--no_seg]
               [--pretrained_path PATH] [--overwrite_global_2_local]
               [--no-val] [--no-test] [--val-size VAL_SIZE]
               [--smooth-labelling] [--num_samples NUM_SAMPLES]
               [--num_workers NUM_WORKERS] [--batch_size BATCH_SIZE]
               [--print_freq N] [--checkpoint_freq N] [--sigma SIGMA]
               [--thresh_ball_pos_mask THRESH] [--start_epoch N]
               [--num_epochs N] [--lr LR] [--minimum_lr MIN_LR] [--momentum M]
               [-wd WD] [--optimizer_type OPTIMIZER] [--lr_type SCHEDULER]
               [--lr_factor FACTOR] [--lr_step_size STEP_SIZE]
               [--lr_patience N] [--earlystop_patience N] [--freeze_global]
               [--freeze_local] [--freeze_event] [--freeze_seg]
               [--bce_weight BCE_WEIGHT] [--global_weight GLOBAL_WEIGHT]
               [--local_weight LOCAL_WEIGHT] [--event_weight EVENT_WEIGHT]
               [--seg_weight SEG_WEIGHT] [--world-size N] [--rank N]
               [--dist-url DIST_URL] [--dist-backend DIST_BACKEND]
               [--gpu_idx GPU_IDX] [--no_cuda] [--multiprocessing-distributed]
               [--evaluate] [--resume_path PATH] [--use_best_checkpoint]
               [--seg_thresh SEG_THRESH] [--event_thresh EVENT_THRESH]
               [--save_test_output] [--video_path PATH] [--output_format PATH]
               [--show_image] [--save_demo_output]

TTNet Implementation

optional arguments:
  -h, --help            show this help message and exit
  --seed SEED           re-produce the results with seed random
  --saved_fn FN         The name using for saving logs, models,...
  -a ARCH, --arch ARCH  The name of the model architecture
  --dropout_p P         The dropout probability of the model
  --multitask_learning  If true, the weights of different losses will be
                        learnt (train).If false, a regular sum of different
                        losses will be applied
  --no_local            If true, no local stage for ball detection.
  --no_event            If true, no event spotting detection.
  --no_seg              If true, no segmentation module.
  --pretrained_path PATH
                        the path of the pretrained checkpoint
  --overwrite_global_2_local
                        If true, the weights of the local stage will be
                        overwritten by the global stage.
  --no-val              If true, use all data for training, no validation set
  --no-test             If true, dont evaluate the model on the test set
  --val-size VAL_SIZE   The size of validation set
  --smooth-labelling    If true, smoothly make the labels of event spotting
  --num_samples NUM_SAMPLES
                        Take a subset of the dataset to run and debug
  --num_workers NUM_WORKERS
                        Number of threads for loading data
  --batch_size BATCH_SIZE
                        mini-batch size (default: 16), this is the totalbatch
                        size of all GPUs on the current node when usingData
                        Parallel or Distributed Data Parallel
  --print_freq N        print frequency (default: 10)
  --checkpoint_freq N   frequency of saving checkpoints (default: 3)
  --sigma SIGMA         standard deviation of the 1D Gaussian for the ball
                        position target
  --thresh_ball_pos_mask THRESH
                        the lower thresh for the 1D Gaussian of the ball
                        position target
  --start_epoch N       the starting epoch
  --num_epochs N        number of total epochs to run
  --lr LR               initial learning rate
  --minimum_lr MIN_LR   minimum learning rate during training
  --momentum M          momentum
  -wd WD, --weight_decay WD
                        weight decay (default: 1e-6)
  --optimizer_type OPTIMIZER
                        the type of optimizer, it can be sgd or adam
  --lr_type SCHEDULER   the type of the learning rate scheduler (steplr or
                        ReduceonPlateau)
  --lr_factor FACTOR    reduce the learning rate with this factor
  --lr_step_size STEP_SIZE
                        step_size of the learning rate when using steplr
                        scheduler
  --lr_patience N       patience of the learning rate when using
                        ReduceoPlateau scheduler
  --earlystop_patience N
                        Early stopping the training process if performance is
                        not improved within this value
  --freeze_global       If true, no update/train weights for the global stage
                        of ball detection.
  --freeze_local        If true, no update/train weights for the local stage
                        of ball detection.
  --freeze_event        If true, no update/train weights for the event module.
  --freeze_seg          If true, no update/train weights for the segmentation
                        module.
  --bce_weight BCE_WEIGHT
                        The weight of BCE loss in segmentation module, the
                        dice_loss weight = 1- bce_weight
  --global_weight GLOBAL_WEIGHT
                        The weight of loss of the global stage for ball
                        detection
  --local_weight LOCAL_WEIGHT
                        The weight of loss of the local stage for ball
                        detection
  --event_weight EVENT_WEIGHT
                        The weight of loss of the event spotting module
  --seg_weight SEG_WEIGHT
                        The weight of BCE loss in segmentation module
  --world-size N        number of nodes for distributed training
  --rank N              node rank for distributed training
  --dist-url DIST_URL   url used to set up distributed training
  --dist-backend DIST_BACKEND
                        distributed backend
  --gpu_idx GPU_IDX     GPU index to use.
  --no_cuda             If true, cuda is not used.
  --multiprocessing-distributed
                        Use multi-processing distributed training to launch N
                        processes per node, which has N GPUs. This is the
                        fastest way to use PyTorch for either single node or
                        multi node data parallel training
  --evaluate            only evaluate the model, not training
  --resume_path PATH    the path of the resumed checkpoint
  --use_best_checkpoint
                        If true, choose the best model on val set, otherwise
                        choose the last model
  --seg_thresh SEG_THRESH
                        threshold of the segmentation output
  --event_thresh EVENT_THRESH
                        threshold of the event spotting output
  --save_test_output    If true, the image of testing phase will be saved
  --video_path PATH     the path of the video that needs to demo
  --output_format PATH  the type of the demo output
  --show_image          If true, show the image during demostration
  --save_demo_output    If true, the image of demonstration phase will be
                        saved
Owner
Nguyen Mau Dung
M.Sc. in HCI & Robotics | Self-driving Car Engineer | AI Engineer | Interested in 3D Computer Vision
Nguyen Mau Dung
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023