A unified framework to jointly model images, text, and human attention traces.

Overview

connect-caption-and-trace

This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attention Traces (CVPR2021).

example results

Requirements

  • Python 3
  • PyTorch 1.5+ (along with torchvision)
  • coco-caption (Remember to follow initialization steps in coco-caption/README.md)

Prepare data

Our experiments cover all four datasets included in Localized Narratives: COCO2017, Flickr30k, Open Images and ADE20k. For each dataset, we need four things: (1) json file containing image info and word tokens. (DATASET_LN.json) (2) h5 file containing caption labels (DATASET_LN_label.h5) (3) The trace labels extracted from Localized Narratives (DATASET_LN_trace_box/) (4) json file for coco-caption evaluation (captions_DATASET_LN_test.json) (5) Image features (with bounding boxes) extracted by a Mask-RCNN pretrained on Visual Genome.

You can download (1--4) from here: (make a folder named data and put (1--3) in it, and put (4) under coco-caption/annotaions/)

To get (5), you can use Detectron2. First, install Detectron2, then follow Prepare COCO-style annotations for Visual Genome (We use the pre-trained Resnet101-C4 model provided there). After that you can utilize tools/extract_feats.py in Detectron2 to extract features. Finally, run scripts/prepare_feats_boxes_from_npz.py in this repo to prepare features and bounding boxes in seperate folders for training.

For COCO dataest you can also directly use the features provided by Peter Anderson here. The performance is almost the same (with around 0.2% difference.)

Training

The dataset can be chosen from the four datasets. The --task can be chosen from trace, caption, c_joint_t and pred_both. The --eval_task can be chosen from trace, caption, and pred_both.

COCO: joint training of controlled caption generation and trace generation (N=2 layers, evaluated on caption generation)

python tools/train.py --language_eval 0 --id transformer_LN_coco  --caption_model transformer --input_json data/coco_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/coco_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/coco_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 2 --task c_joint_t --eval_task caption --dataset_choice=coco

Open image: training of generating caption and trace at the same time (N=1 layers, evaluated on predicting both)

python tools/train.py --language_eval 0 --id transformer_LN_openimg  --caption_model transformer --input_json data/openimg_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/openimg_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/openimg_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 1 --task pred_both --eval_task pred_both --dataset_choice=openimg

Flickr30k: training of controlled caption generation alone (N=1 layer)

python tools/train.py --language_eval 0 --id transformer_LN_flk30k  --caption_model transformer --input_json data/flk30k_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/flk30k_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/flk30k_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 1 --task caption --eval_task caption --dataset_choice=flk30k

ADE20k: training of controlled trace generation alone (N=1 layer)

python tools/train.py --language_eval 0 --id transformer_LN_ade20k  --caption_model transformer --input_json data/ade20k_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/ade20k_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/ade20k_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 1 --task trace --eval_task trace --dataset_choice=ade20k

Evaluating

COCO: joint training of controlled caption generation and trace generation (N=2 layers, evaluated on caption generation)

python tools/train.py --language_eval 1 --id transformer_LN_coco  --caption_model transformer --input_json data/coco_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/coco_LN_label.h5 --batch_size 2 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/coco_LN_trace_box --use_trace_feat 0 --beam_size 5 --val_images_use -1 --num_layers 2 --task c_joint_t --eval_task caption --dataset_choice=coco

COCO: joint training of controlled caption generation and trace generation (N=2 layers, evaluated on trace generation)

python tools/train.py --language_eval 1 --id transformer_LN_coco  --caption_model transformer --input_json data/coco_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/coco_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/coco_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 2 --task c_joint_t --eval_task trace --dataset_choice=coco

Open image: training of generating caption and trace at the same time (N=1 layers, evaluated on predicting both)

python tools/train.py --language_eval 1 --id transformer_LN_openimg  --caption_model transformer --input_json data/openimg_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/openimg_LN_label.h5 --batch_size 2 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/openimg_LN_trace_box --use_trace_feat 0 --beam_size 5 --val_images_use -1 --num_layers 1 --task pred_both --eval_task pred_both --dataset_choice=openimg

Acknowledgements

Some components of this repo were built from Ruotian Luo's ImageCaptioning.pytorch.

Owner
Meta Research
Meta Research
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022