A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Overview

Text to Subtitles - Python

main2

This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

1. Table of Contents

2. Description

2.1 Problem

In a fast-paced TV, Film, and Video production environment Video Editors are often faced with the task to create subtitles quickly and efficiently. They will often have a script that they manually into Video Editing software, one subtitle at a time, then adjust the timing.

In the case of Documentary films or long interviews, the number of subtitles can be overwhelming. In addition, there can be multiple subtitles in different languages.

2.2 Solution

Instead of manually typing the text in Video Editing Software or copy-pasting it from a text file one subtitle at a time this python script automatically converts text paragraphs, located in a text file into a standard .srt subtitle file. It can be then imported into any Video Editing Software.

The script creates subtitles of the same length, such as 3 seconds. Therefore, manual adjustments are still needed after importing the subtitles. Nevertheless, this workflow has proven to be much faster than the full manual process described above.

Input:

Call me Ishmael.

Some years ago,
never mind how long precisely,

having little or no money in my purse,
and nothing particular

Output:

1
00:00:00,000 --> 0:00:03,000
Call me Ishmael.

2
00:00:03,000 --> 0:00:06,000
Some years ago,
never mind how long precisely,

3
00:00:06,000 --> 0:00:09,000
having little or no money in my purse,
and nothing particular

2.3 Motivation behind the project

I first created this workflow when I was Directing and Video Editing TV mini-series. Since deadlines were extremely tight I was looking at every opportunity to speed up the delivery times while maintaining high quality. I later used it for commercial Videography projects. This solution fits my workflow very well and has proven to be very useful.

2.4 Development history

It was originally built simply by using a stack of regular expressions executed in the TextSoap.app along with some operations in Excel and manula copy-pasting. Later most of the steps were combined in a single Python script that is presented here.

3. Technologies Used

  • Python 3.9.4, compatible with Python 2.7 and above
  • datetime integrated module to work with date and time
  • re integrated regular expression operations module
  • os a portable way of using operating system dependent functionality

4. Installation

Download text_to_video_subtitles.py file from this GitHub repository.

5. Usage

5.1 Prepare .txt file

Take existing script or type it from scratch. Then manually split it into paragraphs in the following format:

Call me Ishmael.

Some years ago,
never mind how long precisely,

having little or no money in my purse,
and nothing particular
  • A single line represents a single line in a subtitle.
  • Empty line defines where one subtitle ends and a new one begins.
  • Normally one subtitle has one or two lines, but it can have more.

5.2 Rename and move .txt file

Paste the text into a text editor, then save it as subtitles.txt, and move the file into the same folder with text_to_subtitles.py.

5.3 Launch Python script

Open Terminal.app. Type python, add space, then drag and drop text_to_video_markers.py and press Return.

run python script with terminal

Alternatively, you can install the latest version of Python. Then right-click on text_to_video_markers.py file and choose Open with -> Python Launcher.app.

open python file with python launcher

Either method will run the script and create subtitles.srt file in the same folder.

5.4 Open subtitles.srt with FinalCut Pro

In FinalCut Pro choose File -> Import -> Captions..., then navigate to newly created subtitles.srt and select Import. This will import subtitles into an existing project. They will be visible in Timeline, Index (Captions), and Viewer. You can now easily adjust individual subtitles in Timeline and edit the text in Timeline and Inspector.

That's it! We have just automatically converted text with paragraphs into a universal .srt subtitle file for further adjustments and manipulations in Video editing software such as FinalCut Pro..

finalcut pro markers imported from text

6. Project Status

The project is: complete I am no longer working on it since I am not working for TV any longer. But if you have some ideas or want me to modify something contact me and we should be able to collaborate.

7. Known Limitations

  • An input text file must be named subtitles.txt
  • Text in subtitles.txt** file must be split into paragraphs.
  • Both text_to_subtitles.py and subtitles.txt must be located in the same folder.
  • The default subtitle length is 3 seconds and can only be changed inside text_to_subtitles.py code by changing the number in dursec = 3 statement.

8. Room for Improvement

  • Testing and logging the issues.
  • Making python script an executable file.
  • Developing GUI to be able to specify .txt and .fcpxml input files with any name and location.
  • Building a web app.

9. License

This project is open-source and available under the GNU General Public License v3.0

10. Contact

Created by @DmytroNorth - feel free to contact me at [email protected]!

Owner
Dmytro North
Dmytro North
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021