NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

Related tags

Deep Learningnuanced
Overview

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions

Overview

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns. The dataset focuses on realistic settings where user preferences are extracted from real-world Yelp Open Dataset and paraphrased into natural user responses.

Existing conversational systems are mostly agent-centric, which assumes the user utterances would closely follow the system ontology (for NLU or dialogue state tracking). However, in real-world scenarios, it is highly desirable that the users can speak freely in their own way. It is extremely hard, if not impossible, for the users to adapt to the unknown system ontology.

In this work, we attempt to build a user-centric dialogue system. As there is no clean mapping for a user’s free form utterance to an ontology, we first model the user preferences as estimated distributions over the system ontology and map the users’ utterances to such distributions. Learning such a mapping poses new challenges on reasoning over existing knowledge, ranging from factoid knowledge, commonsense knowledge to the users’ own situations. To this end, we build a new dataset named NUANCED that focuses on such realistic settings for conversational recommendation. We believe NUANCED can serve as a valuable resource to push existing research from the agent-centric system to the user-centric system.

For more details, please refer to the following two papers:
NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions
User Memory Reasoning for Conversational Recommendation

Examples of traditional dataset and NUANCED

Examples of traditional dataset and NUANCED: in real-world scenarios, the free form user utterances often mismatch with system ontology. In NUANCED, we model the user preferences (or dialogue state) as distributions over the ontology, therefore to allow mapping of entities unknown to the system to multiple values and slots for efficient conversation.

Data

In this data release, we have included both the nuanced version where user preferences are mapped to an estimated distribution and the coarse version where user preferences are mapped to discrete slot labels according to system ontology.

  • Folder data_dist: the nuanced version;
  • Folder data_discrete: the coarse version with 0-1 labels;
  • meta.json: ontology for this restaurant domain;

Format for the dataset: A list of dictionaries, with each dictionary as one dialogue of the following important fields:

  • "dialogue": a list of dialog turns. Each turn has the following fields:
  • "role": user or assistant
  • "text": user utterance or system response
  • "dialog_acts": acts of this turn
  • "slots": slots involved in this turn
  • "dist": for user turn, the preference distribution
  • "strategy": strategy 1 means the user utterance does not have grounded ontology terms (implicit reasoning), strategy 2 means the user utterance has grounded ontology terms

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following articles (pdf, pdf):

@article{chen2020nuanced,
  title={NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions},
  author={Chen, Zhiyu and Liu, Honglei and Xu, Hu and Moon, Seungwhan and Zhou, Hao and Liu, Bing},
  journal={arXiv preprint arXiv:2010.12758},
  year={2020}
}
@inproceedings{xu2020user,
  title={User Memory Reasoning for Conversational Recommendation},
  author={Xu, Hu and Moon, Seungwhan and Liu, Honglei and Liu, Bing and Shah, Pararth and Philip, S Yu},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
  pages={5288--5308},
  year={2020}
}

License

NUANCED is released under CC-BY-NC-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022