Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Overview

Consistent Depth of Moving Objects in Video

teaser

This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

This is not an officially supported Google product.

Installing Dependencies

We provide both conda and pip installations for dependencies.

  • To install with conda, run
conda create --name dynamic-video-depth --file ./dependencies/conda_packages.txt
  • To install with pip, run
pip install -r ./dependencies/requirements.txt

Training

We provide two preprocessed video tracks from the DAVIS dataset. To download the pre-trained single-image depth prediction checkpoints, as well as the example data, run:

bash ./scripts/download_data_and_depth_ckpt.sh

This script will automatically download and unzip the checkpoints and data. If you would like to download manually

To train using the example data, run:

bash ./experiments/davis/train_sequence.sh 0 --track_id dog

The first argument indicates the GPU id for training, and --track_id indicates the name of the track. ('dog' and 'train' are provided.)

After training, the results should look like:

Video Our Depth Single Image Depth

Dataset Preparation:

To help with generating custom datasets for training, We provide examples of preparing the dataset from DAVIS, and two sequences from ShutterStock, which are showcased in our paper.

The general work flow for preprocessing the dataset is:

  1. Calibrate the scale of camera translation, transform the camera matrices into camera-to-world convention, and save as individual files.

  2. Calculate flow between pairs of frames, as well as occlusion estimates.

  3. Pack flow and per-frame data into training batches.

To be more specific, example codes are provided in .scripts/preprocess

We provide the triangulation results here and here. You can download them in a single script by running:

bash ./scripts/download_triangulation_files.sh

Davis data preparation

  1. Download the DAVIS dataset here, and unzip it under ./datafiles.

  2. Run python ./scripts/preprocess/davis/generate_frame_midas.py. This requires trimesh to be installed (pip install trimesh should do the trick). This script projects the triangulated 3D points to calibrate camera translation scales.

  3. Run python ./scripts/preprocess/davis/generate_flows.py to generate optical flows between pairs of images. This stage requires RAFT, which is included as a submodule in this repo.

  4. Run python ./scripts/preprocess/davis/generate_sequence_midas.py to pack camera calibrations and images into training batches.

ShutterStock Videos

  1. Download the ShutterStock videos here and here.

  2. Cast the videos as images, put them under ./datafiles/shutterstock/images, and rename them to match the file names in ./datafiles/shutterstock/triangulation. Note that not all frames are triangulated; time stamp of valid frames are recorded in the triangulation file name.

  3. Run python ./scripts/preprocess/shutterstock/generate_frame_midas.py to pack per-frame data.

  4. Run python ./scripts/preprocess/shutterstock/generate_flows.py to generate optical flows between pairs of images.

  5. Run python ./scripts/preprocess/shutterstock/generate_sequence_midas.py to pack flows and per-frame data into training batches.

  6. Example training script is located at ./experiments/shutterstock/train_sequence.sh

Comments
  • question about the Pre-processing

    question about the Pre-processing

    Can you provide the code for preprocessing part? I wonder for dynamic video, how to get accurate camera pose and K? I see you use DAVIS for example, I want to know how to deal with other videos in this dataset.

    opened by Robertwyq 11
  • Parameter finetuning vs Output finetuning

    Parameter finetuning vs Output finetuning

    It seems that running gradient descent for the depth prediction network makes up the majority of the runtime of this method. The current MiDaS implementation (v3?) contains 1.3 GB of parameters, most of which are for the DPT-Large (https://github.com/isl-org/DPT) backbone.

    In your research, did you experiment with performance differences between 'parameter finetuning' and just simple 'output finetuning' for the depth predictions (like as discussed in the GLNet paper (https://arxiv.org/pdf/1907.05820.pdf))?

    I would also be curious about whether as a middle ground, maybe just finetuning the 'head' of the MiDaS network would be sufficient, and leave the much larger set of backbone parameters locked.

    Thanks!

    opened by carsonswope 0
  • How to get the triangulation files for customized videos?

    How to get the triangulation files for customized videos?

    Thanks for sharing this great work!

    I was wondering how to obtain the triangulation files when using my own videos. For example, the dog.intrinsics.txt, dog.matrices.txt, and the dog.obj.

    Are they calculated from colmap? Could you please provide some instructions to get them?

    opened by Cogito2012 0
  • Question about the colmap parameter setting and image resize need to convert the camera pose

    Question about the colmap parameter setting and image resize need to convert the camera pose

    This is very useful work, thanks. I use colmap automatic_reconstructor --camera_model FULL_OPENCV to process the dog training set in DAVIS to get the camera pose, then replacing ./datafiles/DAVIS/triangulation/, other training codes have not changed, but the depth result of each frame has become much worse. How to set the specific parameters of colmap preprocessing? In addition, the image is resized to a small image during training, does the camera pose information obtained by colmap need to be transformed according to resize?

    opened by mayunchao1994 2
  • Question about triangulation results file

    Question about triangulation results file

    This is a great project, Thanks for your work. I have download triangulation results from your link, but i only found dog.intrinsics.txt and train.intrinsics.txt, In DAVIS-2017-trainval-Full-Resolution.zip file, There are 90 files in it, I was wondering if you could share all the triangulation files about Davis and ShutterStock dataset, Thanks very much.

    opened by aiforworlds 0
  • Can not reproduce training result

    Can not reproduce training result

    As it has been mentioned in issue #9 "DAVIS datafiles uncomplete": "datafiles.tar in provided "Google Drive" download link consists only triangulation data. There are no "JPEGImages/1080p" and "Annotation//1080p" folders that "python ./scripts/preprocess/davis/generate_frame_midas.py" refers to." So, I manually downloaded missing data from https://data.vision.ee.ethz.ch/csergi/share/davis/DAVIS-2017-Unsupervised-trainval-Full-Resolution.zip After that the structure as follow:

    ├── datafiles
        ├── DAVIS
            ├── Annotations  --- missing in supplied download links, downloaded manually from DAVIS datasets 
                ├── 1080p
                    ├── dog
                    ├── train
            ├── JPEGImages  --- missing in supplied download links, downloaded manually from DAVIS datasets 
                ├── 1080p
                    ├── dog
                    ├── train
            ├── triangulation -- data from supplied link
    

    Only after that I could successfully performed all steps of suggested in "Davis data preparation":

    1. Run python ./scripts/preprocess/davis/generate_frame_midas.py.
    2. Run python ./scripts/preprocess/davis/generate_flows.py
    3. Run python ./scripts/preprocess/davis/generate_sequence_midas.py

    However still couldn't reproduce the presented result, running: bash ./experiments/davis/train_sequence.sh 0 --track_id dog

    Output & Stacktrace:

    
    D:\dynamic-video-depth-main>bash ./experiments/davis/train_sequence.sh 0 --track_id dog
    python train.py --net scene_flow_motion_field --dataset davis_sequence --track_id train --log_time --epoch_batches 2000 --epoch 20 --lr 1e-6 --html_logger --vali_batches 150 --batch_size 1 --optim adam --vis_batches_vali 4 --vis_every_vali 1 --vis_every_train 1 --vis_batches_train 5 --vis_at_start --tensorboard --gpu 0 --save_net 1 --workers 4 --one_way --loss_type l1 --l1_mul 0 --acc_mul 1 --disp_mul 1 --warm_sf 5 --scene_lr_mul 1000 --repeat 1 --flow_mul 1 --sf_mag_div 100 --time_dependent --gaps 1,2,4,6,8 --midas --use_disp --logdir './checkpoints/davis/sequence/' --suffix 'track_{track_id}_{loss_type}_wreg_{warm_reg}_acc_{acc_mul}_disp_{disp_mul}_flowmul_{flow_mul}_time_{time_dependent}_CNN_{use_cnn}_gap_{gaps}_Midas_{midas}_ud_{use_disp}' --test_template './experiments/davis/test_cmd.txt' --force_overwrite --track_id dog
      File "train.py", line 106
        str_warning, f'ignoring the gpu set up in opt: {opt.gpu}. Will use all gpus in each node.')
                                                                                                 ^
    SyntaxError: invalid syntax
    

    Noticed that there is no folder named ".checkpoints"

    Similar issue has been mentioned in issue #8 "SyntaxError: invalid syntax"

    Specs: Windows 10 Anaconda: conda 4.11.0 Python 3.7.10 GPU 12Gb Quadro M6000 All specified dependencies including RAFT are installed

    opened by makemota 0
  • DAVIS datafiles uncomplete?

    DAVIS datafiles uncomplete?

    "datafiles.tar" in provided "Google Drive" download link consists only triangulation data. There are no "JPEGImages/1080p" and "Annotation//1080p" folders that "python ./scripts/preprocess/davis/generate_frame_midas.py" refers to:

    ---
    data_list_root = "./datafiles/DAVIS/JPEGImages/1080p"
    camera_path = "./datafiles/DAVIS/triangulation"
    mask_path = './datafiles/DAVIS/Annotations/1080p'
    ---
    
    opened by semel1 1
Releases(sig2021_code_release)
Owner
Google
Google ❤️ Open Source
Google
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022