Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Overview

Consistent Depth of Moving Objects in Video

teaser

This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

This is not an officially supported Google product.

Installing Dependencies

We provide both conda and pip installations for dependencies.

  • To install with conda, run
conda create --name dynamic-video-depth --file ./dependencies/conda_packages.txt
  • To install with pip, run
pip install -r ./dependencies/requirements.txt

Training

We provide two preprocessed video tracks from the DAVIS dataset. To download the pre-trained single-image depth prediction checkpoints, as well as the example data, run:

bash ./scripts/download_data_and_depth_ckpt.sh

This script will automatically download and unzip the checkpoints and data. If you would like to download manually

To train using the example data, run:

bash ./experiments/davis/train_sequence.sh 0 --track_id dog

The first argument indicates the GPU id for training, and --track_id indicates the name of the track. ('dog' and 'train' are provided.)

After training, the results should look like:

Video Our Depth Single Image Depth

Dataset Preparation:

To help with generating custom datasets for training, We provide examples of preparing the dataset from DAVIS, and two sequences from ShutterStock, which are showcased in our paper.

The general work flow for preprocessing the dataset is:

  1. Calibrate the scale of camera translation, transform the camera matrices into camera-to-world convention, and save as individual files.

  2. Calculate flow between pairs of frames, as well as occlusion estimates.

  3. Pack flow and per-frame data into training batches.

To be more specific, example codes are provided in .scripts/preprocess

We provide the triangulation results here and here. You can download them in a single script by running:

bash ./scripts/download_triangulation_files.sh

Davis data preparation

  1. Download the DAVIS dataset here, and unzip it under ./datafiles.

  2. Run python ./scripts/preprocess/davis/generate_frame_midas.py. This requires trimesh to be installed (pip install trimesh should do the trick). This script projects the triangulated 3D points to calibrate camera translation scales.

  3. Run python ./scripts/preprocess/davis/generate_flows.py to generate optical flows between pairs of images. This stage requires RAFT, which is included as a submodule in this repo.

  4. Run python ./scripts/preprocess/davis/generate_sequence_midas.py to pack camera calibrations and images into training batches.

ShutterStock Videos

  1. Download the ShutterStock videos here and here.

  2. Cast the videos as images, put them under ./datafiles/shutterstock/images, and rename them to match the file names in ./datafiles/shutterstock/triangulation. Note that not all frames are triangulated; time stamp of valid frames are recorded in the triangulation file name.

  3. Run python ./scripts/preprocess/shutterstock/generate_frame_midas.py to pack per-frame data.

  4. Run python ./scripts/preprocess/shutterstock/generate_flows.py to generate optical flows between pairs of images.

  5. Run python ./scripts/preprocess/shutterstock/generate_sequence_midas.py to pack flows and per-frame data into training batches.

  6. Example training script is located at ./experiments/shutterstock/train_sequence.sh

Comments
  • question about the Pre-processing

    question about the Pre-processing

    Can you provide the code for preprocessing part? I wonder for dynamic video, how to get accurate camera pose and K? I see you use DAVIS for example, I want to know how to deal with other videos in this dataset.

    opened by Robertwyq 11
  • Parameter finetuning vs Output finetuning

    Parameter finetuning vs Output finetuning

    It seems that running gradient descent for the depth prediction network makes up the majority of the runtime of this method. The current MiDaS implementation (v3?) contains 1.3 GB of parameters, most of which are for the DPT-Large (https://github.com/isl-org/DPT) backbone.

    In your research, did you experiment with performance differences between 'parameter finetuning' and just simple 'output finetuning' for the depth predictions (like as discussed in the GLNet paper (https://arxiv.org/pdf/1907.05820.pdf))?

    I would also be curious about whether as a middle ground, maybe just finetuning the 'head' of the MiDaS network would be sufficient, and leave the much larger set of backbone parameters locked.

    Thanks!

    opened by carsonswope 0
  • How to get the triangulation files for customized videos?

    How to get the triangulation files for customized videos?

    Thanks for sharing this great work!

    I was wondering how to obtain the triangulation files when using my own videos. For example, the dog.intrinsics.txt, dog.matrices.txt, and the dog.obj.

    Are they calculated from colmap? Could you please provide some instructions to get them?

    opened by Cogito2012 0
  • Question about the colmap parameter setting and image resize need to convert the camera pose

    Question about the colmap parameter setting and image resize need to convert the camera pose

    This is very useful work, thanks. I use colmap automatic_reconstructor --camera_model FULL_OPENCV to process the dog training set in DAVIS to get the camera pose, then replacing ./datafiles/DAVIS/triangulation/, other training codes have not changed, but the depth result of each frame has become much worse. How to set the specific parameters of colmap preprocessing? In addition, the image is resized to a small image during training, does the camera pose information obtained by colmap need to be transformed according to resize?

    opened by mayunchao1994 2
  • Question about triangulation results file

    Question about triangulation results file

    This is a great project, Thanks for your work. I have download triangulation results from your link, but i only found dog.intrinsics.txt and train.intrinsics.txt, In DAVIS-2017-trainval-Full-Resolution.zip file, There are 90 files in it, I was wondering if you could share all the triangulation files about Davis and ShutterStock dataset, Thanks very much.

    opened by aiforworlds 0
  • Can not reproduce training result

    Can not reproduce training result

    As it has been mentioned in issue #9 "DAVIS datafiles uncomplete": "datafiles.tar in provided "Google Drive" download link consists only triangulation data. There are no "JPEGImages/1080p" and "Annotation//1080p" folders that "python ./scripts/preprocess/davis/generate_frame_midas.py" refers to." So, I manually downloaded missing data from https://data.vision.ee.ethz.ch/csergi/share/davis/DAVIS-2017-Unsupervised-trainval-Full-Resolution.zip After that the structure as follow:

    ├── datafiles
        ├── DAVIS
            ├── Annotations  --- missing in supplied download links, downloaded manually from DAVIS datasets 
                ├── 1080p
                    ├── dog
                    ├── train
            ├── JPEGImages  --- missing in supplied download links, downloaded manually from DAVIS datasets 
                ├── 1080p
                    ├── dog
                    ├── train
            ├── triangulation -- data from supplied link
    

    Only after that I could successfully performed all steps of suggested in "Davis data preparation":

    1. Run python ./scripts/preprocess/davis/generate_frame_midas.py.
    2. Run python ./scripts/preprocess/davis/generate_flows.py
    3. Run python ./scripts/preprocess/davis/generate_sequence_midas.py

    However still couldn't reproduce the presented result, running: bash ./experiments/davis/train_sequence.sh 0 --track_id dog

    Output & Stacktrace:

    
    D:\dynamic-video-depth-main>bash ./experiments/davis/train_sequence.sh 0 --track_id dog
    python train.py --net scene_flow_motion_field --dataset davis_sequence --track_id train --log_time --epoch_batches 2000 --epoch 20 --lr 1e-6 --html_logger --vali_batches 150 --batch_size 1 --optim adam --vis_batches_vali 4 --vis_every_vali 1 --vis_every_train 1 --vis_batches_train 5 --vis_at_start --tensorboard --gpu 0 --save_net 1 --workers 4 --one_way --loss_type l1 --l1_mul 0 --acc_mul 1 --disp_mul 1 --warm_sf 5 --scene_lr_mul 1000 --repeat 1 --flow_mul 1 --sf_mag_div 100 --time_dependent --gaps 1,2,4,6,8 --midas --use_disp --logdir './checkpoints/davis/sequence/' --suffix 'track_{track_id}_{loss_type}_wreg_{warm_reg}_acc_{acc_mul}_disp_{disp_mul}_flowmul_{flow_mul}_time_{time_dependent}_CNN_{use_cnn}_gap_{gaps}_Midas_{midas}_ud_{use_disp}' --test_template './experiments/davis/test_cmd.txt' --force_overwrite --track_id dog
      File "train.py", line 106
        str_warning, f'ignoring the gpu set up in opt: {opt.gpu}. Will use all gpus in each node.')
                                                                                                 ^
    SyntaxError: invalid syntax
    

    Noticed that there is no folder named ".checkpoints"

    Similar issue has been mentioned in issue #8 "SyntaxError: invalid syntax"

    Specs: Windows 10 Anaconda: conda 4.11.0 Python 3.7.10 GPU 12Gb Quadro M6000 All specified dependencies including RAFT are installed

    opened by makemota 0
  • DAVIS datafiles uncomplete?

    DAVIS datafiles uncomplete?

    "datafiles.tar" in provided "Google Drive" download link consists only triangulation data. There are no "JPEGImages/1080p" and "Annotation//1080p" folders that "python ./scripts/preprocess/davis/generate_frame_midas.py" refers to:

    ---
    data_list_root = "./datafiles/DAVIS/JPEGImages/1080p"
    camera_path = "./datafiles/DAVIS/triangulation"
    mask_path = './datafiles/DAVIS/Annotations/1080p'
    ---
    
    opened by semel1 1
Releases(sig2021_code_release)
Owner
Google
Google ❤️ Open Source
Google
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022