This repository contains Python scripts for extracting linguistic features from Filipino texts.

Overview

Filipino Text Linguistic Feature Extractors

This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were created for Joseph's MSCS thesis in readability assessment of children's books. The complete list of linguistic features including the formulas and descriptions are uploaded with this repo. I advise you to check the document first before running the codes.

The scripts only contain functions for extracting a specific feature. So, you only need to create a main.py file and import the necessary script you need and call the functions. For TRAD, SYLL, and LM, I'm fairly certain you are not going to encounter any dependency issues as most scripts just rely on string manipulation. However, I you want to use LEX and MORPH, you need to setup the the following:

  • JDK8 or any latest-ish version of JDK should work.
  • Lastest version of Stanford POS Tagger from the CoreNLP suite. Make sure to read how to set this up on your device.
  • Download the two Filipino models for the POS Tagger from Go and Nocon (2017)'s paper here and load them by reading the instruction at Stanford's FAQ website.

Disclaimer

The scripts uploaded were customized to the needs of the previous research where the these were created. You are free to change or tinker with some of the code according to your own research. For example, in LEX and MORPH, I don't calculate features for all sentence but only for a random subset. You may change this as you like but take caution that it might take a long time to finish parsing.

You may also update some of the features if you feel like it. For example, for extracting language model features in LM, I used an old literal way of calculating perplexity by scratch derived from this repo. This can be easily done efficiently with some open-source library like NLTK or Spacy, I believe.

Credits

If you find this repository useful, please cite the following papers:

Imperial, J. M., & Ong, E. (2021). Diverse Linguistic Features for Assessing Reading Difficulty of Educational Filipino Texts. arXiv preprint arXiv:2108.00241.

Imperial, J. M., & Ong, E. (2020). Exploring Hybrid Linguistic Feature Sets To Measure Filipino Text Readability. In 2020 International Conference on Asian Language Processing (IALP) (pp. 175-180). IEEE.

Imperial, J. M., & Ong, E. (2021). Application of Lexical Features Towards Improvement of Filipino Readability Identification of Children's Literature. arXiv preprint arXiv:2101.10537.

Contact

If there is something you want to tell me about, you may contact me using the following information:

Joseph Marvin Imperial
[email protected]
www.josephimperial.com

Owner
Joseph Imperial
Working on NLP for text complexity and readability. Researcher and instructor at National University PH.
Joseph Imperial
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022