Code for Emergent Translation in Multi-Agent Communication

Overview

Emergent Translation in Multi-Agent Communication

PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Communication.

We present code for training and decoding both word- and sentence-level models and baselines, as well as preprocessed datasets.

Dependencies

Python

  • Python 2.7
  • PyTorch 0.2
  • Numpy

GPU

  • CUDA (we recommend using the latest version. The version 8.0 was used in all our experiments.)

Related code

Downloading Datasets

The original corpora can be downloaded from (Bergsma500, Multi30k, MS COCO). For the preprocessed corpora see below.

Dataset
Bergsma500 Data
Multi30k Data
MS COCO Data

Before you run the code

  1. Download the datasets and place them in /data/word (Bergsma500) and /data/sentence (Multi30k and MS COCO)
  2. Set correct path in scr_path() from /scr/word/util.py and scr_path(), multi30k_reorg_path() and coco_path() from /src/sentence/util.py

Word-level Models

Running nearest neighbour baselines

$ python word/bergsma_bli.py 

Running our models

$ python word/train_word_joint.py --l1 <L1> --l2 <L2>

where <L1> and <L2> are any of {en, de, es, fr, it, nl}

Sentence-level Models

Baseline 1 : Nearest neighbour

$ python sentence/baseline_nn.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG>

Baseline 2 : NMT with neighbouring sentence pairs

$ python sentence/nmt.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG> --nn_baseline 

Baseline 3 : Nakayama and Nishida, 2017

$ python sentence/train_naka_encdec.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG> --train_enc_how <ENC_HOW> --train_dec_how <DEC_HOW>

where <ENC_HOW> is either two or three, and <DEC_HOW> is either img, des, or both.

Our models :

$ python sentence/train_seq_joint.py --dataset <DATASET> --task <TASK>

Aligned NMT :

$ python sentence/nmt.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG> 

where <DATASET> is multi30k or coco, and <TASK> is either 1 or 2 (only applicable for Multi30k).

Dataset & Related Code Attribution

  • Moses is licensed under LGPL, and Subword-NMT is licensed under MIT License.
  • MS COCO and Multi30k are licensed under Creative Commons.

Citation

If you find the resources in this repository useful, please consider citing:

@inproceedings{Lee:18,
  author    = {Jason Lee and Kyunghyun Cho and Jason Weston and Douwe Kiela},
  title     = {Emergent Translation in Multi-Agent Communication},
  year      = {2018},
  booktitle = {Proceedings of the International Conference on Learning Representations},
}
Owner
Facebook Research
Facebook Research
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Prithivida 690 Jan 04, 2023
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022