Local cross-platform machine translation GUI, based on CTranslate2

Overview

DesktopTranslator

Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator

Download Windows Installer

You can either download a ready-made Windows executable installer for DesktopTranslator, or build an installer yourself.
DesktopTranslator

Translation Models

Currently, DesktopTranslator supports CTranslate2 models, and SentencePiece subwording models (you need both). If you have a model for OpenNMT-py, OpenNMT-tf, or FairSeq, you can convert it to a CTranslate2 format.

If you would like to try out the app and you do not have a model, you can download my French-to-English generic model here.

  1. Unzip the fren.zip archive of the French-to-English generic model you just downloaded. It has two folders, ct2_model for the CTranslate2 model and sp_model for the SentencePiece subwording models of French (source) and English (target).
  2. In DesktopTranslator, click the CTranslate2 Model button, and select the ct2_model folder.
  3. Click the SentencePiece Model button, navigate to the sp_model folder, and select fr.model.
  4. In the left input text-area, type some text in French or use the File menu > Open... to open a *.txt file.
  5. Click the Translate button.

Build Windows Installer

If you want to adjust the code and then build an installer yourself, you can follow these steps:

  1. Install PyInstaller:
pip3 install pyinstaller
  1. To use PyInstaller, specify the Python file name and the argument -w to hide the console window:
pyinstaller -y -w "translator.py"
  1. Try the *.exe file under "dist\translator" to make sure it works. It might complain about the Pmw library. The solution is either remove the Balloon lines, or add this file to the same folder as the translate.py and run the aforementioned PyInstaller command again.
  2. Compress the contents of the “dist” directory created by PyInstaller into a *.zip archive.
  3. Download and install NSIS.
  4. Launch NSIS, click Installer based on a .ZIP file, and then click Open to locate the *.zip archive you have just created.
  5. If you want to make the files installed (extracted) to the “Program Files” of the target user, in the Default Folder enter $PROGRAMFILES
  6. If you want to add a shortcut to the internal *.exe file on the Desktop after installation, you can add something like this to the file “Modern.nsh” located at: "C:\Program Files\NSIS\Contrib\zip2exe". Depending on your OS, the path could be at “Program Files (x86)”. Note that the exe path should be consistent with the path you selected under NSIS’s “Default Folder” drop-down menu, the folder name, and the exe file name.
Section "Desktop Shortcut" SectionX
    SetShellVarContext current
    CreateShortCut "$DESKTOP\DesktopTranslator.lnk" "$PROGRAMFILES\DesktopTranslator\translator.exe"
SectionEnd
  1. Finally, click the NSIS Generate button, which will create the *.exe installer that can be shipped to other Windows machines, without the need to install any extra requirements.
  2. After installation, if you applied step #8, you should find an icon on the Desktop. To uninstall, you can simple remove the app forlder from "Program Files". For more NSIS options, check this example.
You might also like...
Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Learning to Rewrite for Non-Autoregressive Neural Machine Translation
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

Releases(v0.2.1)
Owner
Yasmin Moslem
Machine Translation Researcher
Yasmin Moslem
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
A retro text-to-speech bot for Discord

hawking A retro text-to-speech bot for Discord, designed to work with all of the stuff you might've seen in Moonbase Alpha, using the existing command

Nick Schorr 23 Dec 25, 2022