Local cross-platform machine translation GUI, based on CTranslate2

Overview

DesktopTranslator

Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator

Download Windows Installer

You can either download a ready-made Windows executable installer for DesktopTranslator, or build an installer yourself.
DesktopTranslator

Translation Models

Currently, DesktopTranslator supports CTranslate2 models, and SentencePiece subwording models (you need both). If you have a model for OpenNMT-py, OpenNMT-tf, or FairSeq, you can convert it to a CTranslate2 format.

If you would like to try out the app and you do not have a model, you can download my French-to-English generic model here.

  1. Unzip the fren.zip archive of the French-to-English generic model you just downloaded. It has two folders, ct2_model for the CTranslate2 model and sp_model for the SentencePiece subwording models of French (source) and English (target).
  2. In DesktopTranslator, click the CTranslate2 Model button, and select the ct2_model folder.
  3. Click the SentencePiece Model button, navigate to the sp_model folder, and select fr.model.
  4. In the left input text-area, type some text in French or use the File menu > Open... to open a *.txt file.
  5. Click the Translate button.

Build Windows Installer

If you want to adjust the code and then build an installer yourself, you can follow these steps:

  1. Install PyInstaller:
pip3 install pyinstaller
  1. To use PyInstaller, specify the Python file name and the argument -w to hide the console window:
pyinstaller -y -w "translator.py"
  1. Try the *.exe file under "dist\translator" to make sure it works. It might complain about the Pmw library. The solution is either remove the Balloon lines, or add this file to the same folder as the translate.py and run the aforementioned PyInstaller command again.
  2. Compress the contents of the “dist” directory created by PyInstaller into a *.zip archive.
  3. Download and install NSIS.
  4. Launch NSIS, click Installer based on a .ZIP file, and then click Open to locate the *.zip archive you have just created.
  5. If you want to make the files installed (extracted) to the “Program Files” of the target user, in the Default Folder enter $PROGRAMFILES
  6. If you want to add a shortcut to the internal *.exe file on the Desktop after installation, you can add something like this to the file “Modern.nsh” located at: "C:\Program Files\NSIS\Contrib\zip2exe". Depending on your OS, the path could be at “Program Files (x86)”. Note that the exe path should be consistent with the path you selected under NSIS’s “Default Folder” drop-down menu, the folder name, and the exe file name.
Section "Desktop Shortcut" SectionX
    SetShellVarContext current
    CreateShortCut "$DESKTOP\DesktopTranslator.lnk" "$PROGRAMFILES\DesktopTranslator\translator.exe"
SectionEnd
  1. Finally, click the NSIS Generate button, which will create the *.exe installer that can be shipped to other Windows machines, without the need to install any extra requirements.
  2. After installation, if you applied step #8, you should find an icon on the Desktop. To uninstall, you can simple remove the app forlder from "Program Files". For more NSIS options, check this example.
You might also like...
Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Learning to Rewrite for Non-Autoregressive Neural Machine Translation
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

Releases(v0.2.1)
Owner
Yasmin Moslem
Machine Translation Researcher
Yasmin Moslem
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022