YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

Overview

YOLOX-Paddle

A reproduction of YOLOX by PaddlePaddle

数据集准备

下载COCO数据集,准备为如下路径

/home/aistudio
|-- COCO
|   |-- annotions
|   |-- train2017
|   |-- val2017

除了常用的图像处理库,需要安装额外的包

pip install gputil==1.4.0 loguru pycocotools

进入仓库根目录,编译安装(推荐使用AIStudio

cd YOLOX-Paddle
pip install -v -e .

如果使用本地机器出现编译失败,需要修改YOLOX-Paddle/yolox/layers/csrc/cocoeval/cocoeval.h中导入pybind11的include文件为本机目录,使用如下命令获取pybind11include目录

>>> import pybind11
>>> pybind11.get_include()
'/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include'

AIStudio路径

#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/numpy.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/pybind11.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/stl.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/stl_bind.h>

成功后使用pip list可看到安装模块

yolox    0.1.0    /home/aistudio/YOLOX-Paddle

设置YOLOX_DATADIR环境变量\或者`ln -s /path/to/your/COCO ./datasets/COCO`来指定COCO数据集位置

export YOLOX_DATADIR=/home/aistudio/

训练

python tools/train.py -n yolox-nano -d 1 -b 64

得到的权重保存至./YOLOX_outputs/nano/yolox_nano.pdparams

验证

python tools/eval.py -n yolox-nano -c ./YOLOX_outputs/nano/yolox_nano.pdparams -b 64 -d 1 --conf 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.416
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.269
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.274
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.242
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.384
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.419
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.154
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.470
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.632

并提供了官方预训练权重,code:ybxc

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3

推理

python tools/demo.py image -n yolox-nano -c ./YOLOX_outputs/nano/yolox_nano.pdparams --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result

推理结果如下所示

Train Custom Data

相信这是大部分开发者最关心的事情,本章节参考如下仓库,本仓库现已集成

  • Converting darknet or yolov5 datasets to COCO format for YOLOX: YOLO2COCO from Daniel

数据准备

我们同样以YOLOv5格式的光栅数据集为例,可在此处下载 进入仓库根目录,下载解压,数据集应该具有如下目录:

YOLOX-Paddle
|-- guangshan
|   |-- images
|      |-- train
|      |-- val
|   |-- labels
|      |-- train
|      |-- val

现在运行如下命令

bash prepare.sh

然后添加一个classes.txt,你应该得到如下目录,并在生成的YOLOV5_COCO_format得到COCO数据格式的数据集:

YOLOX-Paddle/YOLO2COCO/dataset
|-- YOLOV5
|   |-- guangshan
|   |   |-- images
|   |   |-- labels
|   |-- train.txt
|   |-- val.txt
|   |-- classes.txt
|-- YOLOV5_COCO_format
|   |-- train2017
|   |-- val2017
|   |-- annotations

可参考YOLOV5_COCO_format下的README.md

训练、验证、推理

配置custom训练文件YOLOX-Paddle/exps/example/custom/nano.py,修改self.num_classes为你的类别数,其余配置可根据喜好调参,使用如下命令启动训练

python tools/train.py -f ./exps/example/custom/nano.py -n yolox-nano -d 1 -b 8

使用如下命令启动验证

python tools/eval.py -f ./exps/example/custom/nano.py -n yolox-nano -c ./YOLOX_outputs_custom/nano/best_ckpt.pdparams -b 64 -d 1 --conf 0.001

使用如下命令启动推理

python tools/demo.py image -f ./exps/example/custom/nano.py -n yolox-nano -c ./YOLOX_outputs_custom/nano/best_ckpt.pdparams --path test.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result

其余部分参考COCO数据集,整个训练文件保存在YOLOX_outputs_custom文件夹

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
CSDN主页 Deep Hao的CSDN主页
GitHub主页 Deep Hao的GitHub主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
Owner
QuanHao Guo
Master at UESTC
QuanHao Guo
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021