YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

Overview

YOLOX-Paddle

A reproduction of YOLOX by PaddlePaddle

数据集准备

下载COCO数据集,准备为如下路径

/home/aistudio
|-- COCO
|   |-- annotions
|   |-- train2017
|   |-- val2017

除了常用的图像处理库,需要安装额外的包

pip install gputil==1.4.0 loguru pycocotools

进入仓库根目录,编译安装(推荐使用AIStudio

cd YOLOX-Paddle
pip install -v -e .

如果使用本地机器出现编译失败,需要修改YOLOX-Paddle/yolox/layers/csrc/cocoeval/cocoeval.h中导入pybind11的include文件为本机目录,使用如下命令获取pybind11include目录

>>> import pybind11
>>> pybind11.get_include()
'/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include'

AIStudio路径

#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/numpy.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/pybind11.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/stl.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/stl_bind.h>

成功后使用pip list可看到安装模块

yolox    0.1.0    /home/aistudio/YOLOX-Paddle

设置YOLOX_DATADIR环境变量\或者`ln -s /path/to/your/COCO ./datasets/COCO`来指定COCO数据集位置

export YOLOX_DATADIR=/home/aistudio/

训练

python tools/train.py -n yolox-nano -d 1 -b 64

得到的权重保存至./YOLOX_outputs/nano/yolox_nano.pdparams

验证

python tools/eval.py -n yolox-nano -c ./YOLOX_outputs/nano/yolox_nano.pdparams -b 64 -d 1 --conf 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.416
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.269
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.274
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.242
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.384
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.419
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.154
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.470
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.632

并提供了官方预训练权重,code:ybxc

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3

推理

python tools/demo.py image -n yolox-nano -c ./YOLOX_outputs/nano/yolox_nano.pdparams --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result

推理结果如下所示

Train Custom Data

相信这是大部分开发者最关心的事情,本章节参考如下仓库,本仓库现已集成

  • Converting darknet or yolov5 datasets to COCO format for YOLOX: YOLO2COCO from Daniel

数据准备

我们同样以YOLOv5格式的光栅数据集为例,可在此处下载 进入仓库根目录,下载解压,数据集应该具有如下目录:

YOLOX-Paddle
|-- guangshan
|   |-- images
|      |-- train
|      |-- val
|   |-- labels
|      |-- train
|      |-- val

现在运行如下命令

bash prepare.sh

然后添加一个classes.txt,你应该得到如下目录,并在生成的YOLOV5_COCO_format得到COCO数据格式的数据集:

YOLOX-Paddle/YOLO2COCO/dataset
|-- YOLOV5
|   |-- guangshan
|   |   |-- images
|   |   |-- labels
|   |-- train.txt
|   |-- val.txt
|   |-- classes.txt
|-- YOLOV5_COCO_format
|   |-- train2017
|   |-- val2017
|   |-- annotations

可参考YOLOV5_COCO_format下的README.md

训练、验证、推理

配置custom训练文件YOLOX-Paddle/exps/example/custom/nano.py,修改self.num_classes为你的类别数,其余配置可根据喜好调参,使用如下命令启动训练

python tools/train.py -f ./exps/example/custom/nano.py -n yolox-nano -d 1 -b 8

使用如下命令启动验证

python tools/eval.py -f ./exps/example/custom/nano.py -n yolox-nano -c ./YOLOX_outputs_custom/nano/best_ckpt.pdparams -b 64 -d 1 --conf 0.001

使用如下命令启动推理

python tools/demo.py image -f ./exps/example/custom/nano.py -n yolox-nano -c ./YOLOX_outputs_custom/nano/best_ckpt.pdparams --path test.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result

其余部分参考COCO数据集,整个训练文件保存在YOLOX_outputs_custom文件夹

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
CSDN主页 Deep Hao的CSDN主页
GitHub主页 Deep Hao的GitHub主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
Owner
QuanHao Guo
Master at UESTC
QuanHao Guo
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
3 Apr 20, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022