[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

Related tags

Deep LearningIICNet
Overview

IICNet - Invertible Image Conversion Net

Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). Demo Video | Supplements

Introduction

Reversible image conversion (RIC) aims to build a reversible transformation between specific visual content (e.g., short videos) and an embedding image, where the original content can be restored from the embedding when necessary. This work develops Invertible Image Conversion Net (IICNet) as a generic solution to various RIC tasks due to its strong capacity and task-independent design. Unlike previous encoder-decoder based methods, IICNet maintains a highly invertible structure based on invertible neural networks (INNs) to better preserve the information during conversion. We use a relation module and a channel squeeze layer to improve the INN nonlinearity to extract cross-image relations and the network flexibility, respectively. Experimental results demonstrate that IICNet outperforms the specifically-designed methods on existing RIC tasks and can generalize well to various newly-explored tasks. With our generic IICNet, we no longer need to hand-engineer task-specific embedding networks for rapidly occurring visual content.

Installation

Clone this repository and set up the environment.

git clone https://github.com/felixcheng97/IICNet.git
cd IICNet/
conda env create -f iic.yml

Dataset Preparation

We conduct experments on 5 multiple-and-single RIC tasks in the main paper and 2 single-and-single RIC tasks in the supplements. Note that all the datasets are placed under the ./datasets directory.

Task 1: Spatial-Temporal Video Embedding

We use the high-quality DAVIS 2017 video dataset in this task. You could download the Semi-supervised 480p dataset through this link. Unzip, rename, and place them under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |   |-- DAVIS-2017-test-challenge (rename the DAVIS folder from DAVIS-2017-test-challenge-480p.zip)
    |   |-- DAVIS-2017-test-dev       (rename the DAVIS folder from DAVIS-2017-test-dev-480p.zip)
    |   `-- DAVIS-2017-trainval       (rename the DAVIS folder from DAVIS-2017-trainval-480p.zip)
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python davis_annotation.py

Task 2: Mononizing Binocular Images

We use the Flickr1024 dataset with the official train and test splits in this task. You could download the dataset through this link. Place the dataset under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |   |-- Test
    |   |-- Train_1
    |   |-- Train_2
    |   |-- Train_3
    |   |-- Train_4
    |   `-- Validation
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python flicker1024_annotation.py

Task 3: Embedding Dual-View Images

We use the DIV2K dataset in this task. You could download the dataset through this link. Download the corresponding datasets and place them under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |   |-- DIV2K_train_HR
    |   |-- DIV2K_train_LR_bicubic
    |   |   |-- X2
    |   |   |-- X4
    |   |   |-- X8
    |   |-- DIV2K_valid_HR
    |   `-- DIV2K_valid_LR_bicubic
    |       |-- X2
    |       |-- X4
    |       `-- X8
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python div2kddual_annotation.py

Task 4: Embedding Multi-Layer Images / Composition and Decomposition

We use the Adobe Deep Matting dataset and the Real Matting dataset in this task. You could download the Adobe Deep Matting dataset according to their instructions through this link. You could download the Real Matting dataset on its official GitHub page or through this direct link. Place the downloaded datasets under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |   |-- Addobe_Deep_Matting_Dataset.zip
    |   |-- train2014.zip
    |   |-- VOC2008test.tar
    |   `-- VOCtrainval_14-Jul-2008.tar
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    |   |-- fixed-camera
    |   `-- hand-held
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts

# process the Adobe Matting dataset
python adobe_process.py
python adobe_annotation.py

# process the Real Matting dataset
python real_process.py
python real_annotation.py

Task 5: Hiding Images in an Image

We use the Flicker 2W dataset in this task. You could download the dataset on its official GitHub page through this link. Place the unzipped dataset under the datasets directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |   `-- flicker_2W_images
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python flicker_annotation.py

Task 6 (supp): Invertible Grayscale

We use the VOC2012 dataset in this task. You could download the training/validation dataset through this link. Place the unzipped dataset under the datasets directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit
        `-- VOC2012

Then run the following scripts for annotation

cd codes/scripts
python voc2012_annotation.py

Task 7 (supp): Invertible Image Rescaling

We use the DIV2K dataset in this task. Please check Task 3: Embedding Dual-View Images to download the corresponding dataset. Then run the following scripts for annotation.

cd codes/scripts
python div2ksr_annotation.py

Training

To train a model for a specific task, run the following script:

cd codes
OMP_NUM_THREADS=4 python train.py -opt ./conf/train/<xxx>.yml

To enable distributed training with multiple GPUs for a specific task, simply assign a list of gpu_ids in the yml file and run the following script. Note that since training with multiple GPU is not tested yet, we suggest to train a model with a single GPU.

cd codes
OMP_NUM_THREADS=4 python -m torch.distributed.launch --nproc_per_node=4 --master_port 29501 train.py -opt ./conf/train/<xxx>.yml

Testing

We provide our trained models in our paper for your reference. Download all the pretrained weights of our models from Google Drive or Baidu Drive (extraction code: e377). Unzip the zip file and place pretrained models under the ./experiments directory.

To test a model for a specific task, run the following script:

cd codes
OMP_NUM_THREADS=4 python test.py -opt ./conf/test/<xxx>.yml

Acknowledgement

Some codes of this repository benefits from Invertible Image Rescaling (IRN).

Citation

If you find this work useful, please cite our paper:

@inproceedings{cheng2021iicnet,
    title = {IICNet: A Generic Framework for Reversible Image Conversion}, 
    author = {Ka Leong Cheng and Yueqi Xie and Qifeng Chen},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    year = {2021}
}

Contact

Feel free to open an issue if you have any question. You could also directly contact us through email at [email protected] (Ka Leong Cheng) and [email protected] (Yueqi Xie).

Owner
felixcheng97
felixcheng97
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022