JittorVis - Visual understanding of deep learning models

Overview

JittorVis: Visual understanding of deep learning model

Image of JittorVis

JittorVis is an open-source library for understanding the inner workings of Jittor models by visually illustrating their dataflow graphs.

Deep neural networks have achieved breakthrough performance in many tasks such as image recognition, detection, segmentation, generation, etc. However, the development of high-quality deep models typically relies on a substantial amount of trial and error, as there is still no clear understanding of when and why a deep model works. Also, the complexity of the deep neural network architecture brings difficulties to debugging and modifying the model. JittorVis facilitates the visualization of the dataflow graph of the deep neural network at different levels, which brings users a deeper understanding of the dataflow graph from the whole to the part to debug and modify the model more effectively.

JittorVis provides the visualization and tooling needed for machine learning experimentation:

  • Displaying the hierarchical structure of the model dataflow graph
  • Visualizing the dataflow graph at different levels (ops and layers)
  • Profiling Jittor programs

Features to be supported in the future:

  • Tracking and visualizing metrics such as loss and accuracy
  • Viewing line charts of weights, biases, or other tensors as they change over time
  • And much more

Related Links:

Installation

JittorVis need python version >= 3.7.

pip install jittorvis
or
pip3 install jittorvis

Usage

There are several ways to use JittorVis.

  1. Visualizing a Jittor model directly.
import jittor as jt
from jittor import Module
from jittor import nn
import numpy as np

class Model(Module):
    def __init__(self):
        self.layer1 = nn.Linear(1, 10)
        self.relu = nn.Relu() 
        self.layer2 = nn.Linear(10, 1)
    def execute (self,x) :
        x = self.layer1(x)
        x = self.relu(x)
        x = self.layer2(x)
        return x

model = Model()

from jittorvis import server
input = jt.float32(np.random.rand(10, 1))
server.visualize(input, model, host = '0.0.0.0')
# JittorVis start.
# server.stop()
# JittorVis stop.

Then open the link 'http://localhost:5005/static/index.html' in your browser.

  1. Visualizing an exported Jittor computational graph (an example graph can be downloaded here).
from jittorvis import server
server.run('test.pkl', host='0.0.0.0', port=5005)
# JittorVis start.
# server.stop()
# JittorVis stop.
  1. Visualizing an exported Jittor computational graph with command line interface.
jittorvis --data_path test.pkl --host='0.0.0.0' --port=5005

Visualization

JittorVis contains three main views: statistics view, navigation view, and graph structure view.

  1. Statistics view:

    The statistics view provides statistics information for the deep neural network, such as loss and accuracy.

  2. Navigation view:

    The navigation view visualizes the hierarchical structure of a Jittor model to facilitate the exploration of the model. Each tree node represents a computational node in the dataflow graph, and each leaf node represents a basic operation in the graph. Users can click one intermediate node to selected its computational nodes and turn to the graph structure view to explore their graph structure.

Drawing

  1. Graph structure view:

    The graph structure view displays the graph structure of a Jittor graph. In the graph structure view, each rectangle represents a computational node, and each link represents dataflows among computational nodes. The graph structure view has the following interactions:

    • Drag to pan
    • Scroll to zoom in and out
    • Click one computational node to explore its feature map
    • Click the top-right plus button of one computational node to explore its children
    • Click the top-right button “←” to return to the previous level of the graph
    • Right-click one computational node to explore its detailed information

Drawing

Citation

Towards Better Analysis of Deep Convolutional Neural Networks

@article {
    liu2017convolutional,
    author={Liu, Mengchen and Shi, Jiaxin and Li, Zhen and Li, Chongxuan and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Towards Better Analysis of Deep Convolutional Neural Networks},
    year={2017},
    volume={23},
    number={1},
    pages={91-100}
}

Analyzing the Training Processes of Deep Generative Models

@article {
    liu2018generative,
    author={Liu, Mengchen and Shi, Jiaxin and Cao, Kelei and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Training Processes of Deep Generative Models},
    year={2018},
    volume={24},
    number={1},
    pages={77-87}
}

Analyzing the Noise Robustness of Deep Neural Networks

@article {
    cao2021robustness,
    author={Cao, Kelei and Liu, Mengchen and Su, Hang and Wu, Jing and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Noise Robustness of Deep Neural Networks},
    year={2021},
    volume={27},
    number={7},
    pages={3289-3304}
}

The Team

JittorVis is currently maintained by the THUVIS Group. If you are also interested in JittorVis and want to improve it, Please join us!

License

JittorVis is Apache 2.0 licensed, as found in the LICENSE.txt file.

Owner
thu-vis
Tsinghua Visual Analytics Group
thu-vis
JugLab 33 Dec 30, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022