Code from PropMix, accepted at BMVC'21

Related tags

Deep LearningPropMix
Overview

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels

This repository is the official implementation of Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels (BMVC 2021).

Authors: Filipe R. Cordeiro; Vasileios Belagiannis, Ian Reid and Gustavo Carneiro

Illustration

Requirements

  • This codebase is written for python3.
  • To install necessary python packages, run pip install -r requirements.txt.

Training and Evaluating

The pipeline for training with PropMix is the following:

  1. Self-supervised pretrain.

In our paper we use SimCLR for most of the datasets. We use moco-v2 to pre-train an InceptionResNetV2 on Webvision. Other self-supervised methods can be used as well.

If you use SimCLR, run:

python simclr.py --config_env configs/env.yml --config_exp configs/pretext/<config_file.yml> --cudaid 0

  1. Clustering

python scan.py --config_env configs/env.yml --config_exp configs/scan/<config_file.yml> --cudaid 0

  1. Train the model (using the pretraining from steps 1 and 2)

For CIFAR-10/CIFAR-100:

python propmix.py --r [0.2/0.5/0.8/0.9] --noise_mode [sym/asym] --config_env configs/env.yml --config_exp configs/propmix/<config_file.yml> --cudaid 0

Add --nopt if you wish to train from scratch, without the self-supervised pretrain, from steps 1 and 2. Add --strong_aug to use strong augmentation. Recommended for high noise rates.

License and Contributing

  • This README is formatted based on paperswithcode.
  • This project is licensed under the terms of the MIT license.
  • Feel free to post issues via Github.

Cite PropMix
If you find the code useful in your research, please consider citing our paper:

@article{cordeiroPropMix2021,
  title={PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels},
  author={Cordeiro, F. R. and Belagiannis, Vasileios and Reid, Ian and Carneiro, Gustavo},
  journal={The 32nd British Machine Vision Conference},
  volume={?},
  year={2021}
}

Contact

Please contact [email protected] if you have any question on the codes.

Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022