SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

Overview

License: MIT Python GitHub code size in bytes Downloads GitHub Workflow Status PyPI version GitHub issues GitHub commit activity GitHub last commit arXiv

[arXiv]

The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, which was actually in operation for a decade. In addition, the SHIFT15M dataset has several types of dataset shifts, allowing us to evaluate the robustness of the model to different types of shifts (e.g., covariate shift and target shift).

We provide the Datasheet for SHIFT15M. This datasheet is based on the Datasheets for Datasets [1] template.

System Python 3.6 Python 3.7 Python 3.8
Linux CPU
Linux GPU
Windows CPU / GPU Status Currently Unavailable Status Currently Unavailable Status Currently Unavailable
Mac OS CPU

SHIFT15M is a large-scale dataset based on approximately 15 million items accumulated by the fashion search service IQON.

Installation

From PyPi

$ pip install shift15m

From source

$ git clone https://github.com/st-tech/zozo-shift15m.git
$ cd zozo-shift15m
$ poetry build
$ pip install dist/shift15m-xxxx-py3-none-any.whl

Download SHIFT15M dataset

Use Dataset class

You can download SHIFT15M dataset as follows:

from shift15.datasets import NumLikesRegression

dataset = NumLikesRegression(root="./data", download=True)

Download directly by using download scripts

Please download the dataset as follows:

$ bash scripts/download_all.sh

To avoid downloading the test dataset for set matching (80GB), which is not required in training, you can use the following script.

$ bash scripts/download_all_wo_set_testdata.sh

Tasks

The following tasks are now available:

Tasks Task type Shift type # of input dim # of output dim
NumLikesRegression regression target shift (N, 25) (N, 1)
SumPricesRegression regression covariate shift, target shift (N, 1) (N, 1)
ItemPriceRegression regression target shift (N, 4096) (N, 1)
ItemCategoryClassification classification target shift (N, 4096) (N, 7)
Set2SetMatching set-to-set matching covariate shift (N, 4096)x(M, 4096) (1)

Benchmarks

As templates for numerical experiments on the SHIFT15M dataset, we have published experimental results for each task with several models.

Original Dataset Structure

The original dataset is maintained in json format, and a row consists of the following:

{
  "user":{"user_id":"xxxx", "fav_brand_ids":"xxxx,xx,..."},
  "like_num":"xx",
  "set_id":"xxx",
  "items":[
    {"price":"xxxx","item_id":"xxxxxx","category_id1":"xx","category_id2":"xxxxx"},
    ...
  ],
  "publish_date":"yyyy-mm-dd"
}

Contributing

To learn more about making a contribution to SHIFT15M, please see the following materials:

License

The dataset itself is provided under a CC BY-NC 4.0 license. On the other hand, the software in this repository is provided under the MIT license.

Dataset metadata

The following table is necessary for this dataset to be indexed by search engines such as Google Dataset Search.

property value
name SHIFT15M Dataset
alternateName SHIFT15M
alternateName shift15m-dataset
url
sameAs https://github.com/st-tech/zozo-shift15m
description SHIFT15M is a multi-objective, multi-domain dataset which includes multiple dataset shifts.
provider
property value
name ZOZO Research
sameAs https://ja.wikipedia.org/wiki/ZOZO
license
property value
name CC BY-NC 4.0
url

Citation

@misc{Kimura_SHIFT15M_Multiobjective_LargeScale_2021,
author = {Kimura, Masanari and Nakamura, Takuma and Saito, Yuki},
month = {8},
title = {SHIFT15M: Multiobjective Large-Scale Fashion Dataset with Distributional Shifts},
year = {2021}
}

Errata

No errata are currently available.

References

  • [1] Gebru, Timnit, et al. "Datasheets for datasets." arXiv preprint arXiv:1803.09010 (2018).
Comments
Releases(v0.2.0)
  • v0.2.0(Sep 20, 2022)

    • add tags info as follows:
    {
      "user":{"user_id":"xxxx", "fav_brand_ids":"xxxx,xx,..."},
      "like_num":"xx",
      "set_id":"xxx",
      "items":[
        {"price":"xxxx","item_id":"xxxxxx","category_id1":"xx","category_id2":"xxxxx"},
        ...
      ],
      "publish_date":"yyyy-mm-dd",
      "tags": "tag_a, tag_b, tag_c, ..."
    }
    
    • add superset matching benchmark
    • fix a label creation bug on set matching with multiple splits
    Source code(tar.gz)
    Source code(zip)
  • v.0.1.2(Nov 24, 2021)

Owner
ZOZO, Inc.
ZOZO, Inc.
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022