SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

Related tags

Deep LearningSalFBNet
Overview

SalFBNet

This repository includes Pytorch implementation for the following paper:

SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks, 2021. (pdf)

Guanqun Ding, Nevrez Imamoglu, Ali Caglayan, Masahiro Murakawa, Ryosuke Nakamura

input

Citation

Please cite the following papers if you use our data or codes in your research.

@misc{ding2021salfbnet,
      title={SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks}, 
      author={Guanqun Ding and Nevrez Imamouglu and Ali Caglayan and Masahiro Murakawa and Ryosuke Nakamura},
      year={2021},
      eprint={2112.03731},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{ding2021fbnet,
  title={FBNet: FeedBack-Recursive CNN for Saliency Detection},
  author={Ding, Guanqun and {\.I}mamo{\u{g}}lu, Nevrez and Caglayan, Ali and Murakawa, Masahiro and Nakamura, Ryosuke},
  booktitle={2021 17th International Conference on Machine Vision and Applications (MVA)},
  pages={1--5},
  year={2021},
  organization={IEEE}
}

Getting Started

1. Installation

You can install the envs mannually by following commands:

conda create -n salfbnet python=3.8
conda activate salfbnet
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
pip install scikit-learn scipy tensorboard tqdm
pip install torchSummeryX

Alternativaly, you can install the envs from yml file. Before running the command, please revise the 'prefix' with your PC name.

conda env create -f environment.yml

2. Run

The running code will be released after our paper is published.

3. Datasets

Dataset #Image #Training #Val. #Testing Size URL Paper
SALICON 20,000 10,000 5,000 5,000 ~4GB download link paper
MIT300 300 - - 300 ~44.4MB download link paper
MIT1003 1003 900* 103* - ~178.7MB download link paper
PASCAL-S 850 - - 850 ~108.3MB download link paper
DUT-OMRON 5,168 - - 5,168 ~151.8MB download link paper
TORONTO 120 - - 120 ~92.3MB download link paper
Pseudo-Saliency (Ours) 176,880 150,000 26,880 - ~24.2GB [download link] [paper]
  • *Training and Validation sets are randomly split by this work.
  • We will release our Pseudo-Saliency dataset after our paper is published.

4. Downloads

  • Our pre-trained models

    It will be available soon.

  • Our Pseudo-Saliency dataset (~24.2GB)

    It will be available soon.

    1. Downloading all zipped files, and using following command to restore the complete zip file:
    zip -F PseudoSaliency_avg_dataset.zip --out PseudoSaliency_avg.zip
    
    1. Then unzip the file:
    unzip PseudoSaliency_avg.zip
    
  • Our testing saliency results on public datasets

    You can download our testing saliency resutls from this [link].

Performance Evaluation

1. Visulization Results

input

2. Testing Performance on DUT-OMRON, PASCAL-S, and TORONTO

input

3. Testing Performance on SALICON

input

4. Testing Performance on MIT300

input

5. Efficiency Comparison

input

Pseudo-Saliency Dataset

1. Annotation

input

2. Pseudo Saliency Distribution

input

Acknowledgement

A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022