This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Overview

Awesome-Visual-CaptioningAwesome

Table of Contents

Paper Roadmap

ACL-2021

Image Captioning

  • Control Image Captioning Spatially and Temporally
  • SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation via Typicality Analysis [paper] [code]
  • Enhancing Descriptive Image Captioning with Natural Language Inference
  • UMIC: An Unreferenced Metric for Image Captioning via Contrastive Learning [paper]
  • Semantic Relation-aware Difference Representation Learning for Change Captioning

Video Captioning

  • Hierarchical Context-aware Network for Dense Video Event Captioning
  • Video Paragraph Captioning as a Text Summarization Task
  • O2NA: An Object-Oriented Non-Autoregressive Approach for Controllable Video Captioning

CVPR-2021

Image Captioning

  • Connecting What to Say With Where to Look by Modeling Human Attention Traces. [paper] [code]
  • Multiple Instance Captioning: Learning Representations from Histopathology Textbooks and Articles. [paper]
  • Improving OCR-Based Image Captioning by Incorporating Geometrical Relationship. [paper]
  • Image Change Captioning by Learning From an Auxiliary Task. [paper]
  • Scan2Cap: Context-aware Dense Captioning in RGB-D Scans. [paper] [code]
  • Towards Bridging Event Captioner and Sentence Localizer for Weakly Supervised Dense Event Captioning. paper
  • TAP: Text-Aware Pre-Training for Text-VQA and Text-Caption. [paper]
  • Towards Accurate Text-Based Image Captioning With Content Diversity Exploration. [paper]
  • FAIEr: Fidelity and Adequacy Ensured Image Caption Evaluation. [paper]
  • RSTNet: Captioning With Adaptive Attention on Visual and Non-Visual Words. [paper]
  • Human-Like Controllable Image Captioning With Verb-Specific Semantic Roles. [paper]

Video Captioning

  • Open-Book Video Captioning With Retrieve-Copy-Generate Network. [paper]
  • Towards Diverse Paragraph Captioning for Untrimmed Videos. [paper]

AAAI-2021

Image Captioning

  • Partially Non-Autoregressive Image Captioning. [code]
  • Improving Image Captioning by Leveraging Intra- and Inter-layer Global Representation in Transformer Network. [paper]
  • Object Relation Attention for Image Paragraph Captioning [paper]
  • Dual-Level Collaborative Transformer for Image Captioning. [paper] [code]
  • Memory-Augmented Image Captioning [paper]
  • Image Captioning with Context-Aware Auxiliary Guidance. [paper]
  • Consensus Graph Representation Learning for Better Grounded Image Captioning. [paper]
  • FixMyPose: Pose Correctional Captioning and Retrieval. [paper] [code] [website]
  • VIVO: Visual Vocabulary Pre-Training for Novel Object Captioning [paper]

Video Captioning

  • Non-Autoregressive Coarse-to-Fine Video Captioning. [paper]
  • Semantic Grouping Network for Video Captioning. [paper] [code]
  • Augmented Partial Mutual Learning with Frame Masking for Video Captioning. [paper]

ACMMM-2020

Image Captioning

  • Structural Semantic Adversarial Active Learning for Image Captioning. oral [paper]
  • Iterative Back Modification for Faster Image Captioning. [paper]
  • Bridging the Gap between Vision and Language Domains for Improved Image Captioning. [paper]
  • Hierarchical Scene Graph Encoder-Decoder for Image Paragraph Captioning. [paper]
  • Improving Intra- and Inter-Modality Visual Relation for Image Captioning. [paper]
  • ICECAP: Information Concentrated Entity-aware Image Captioning. [paper]
  • Attacking Image Captioning Towards Accuracy-Preserving Target Words Removal. [paper]
  • Multimodal Attention with Image Text Spatial Relationship for OCR-Based Image Captioning. [paper]

Video Captioning

  • Controllable Video Captioning with an Exemplar Sentence. oral [paper]
  • Poet: Product-oriented Video Captioner for E-commerce. oral [paper]
  • Learning Semantic Concepts and Temporal Alignment for Narrated Video Procedural Captioning. [paper]
  • Relational Graph Learning for Grounded Video Description Generation. [paper]

NeurIPS-2020

  • Prophet Attention: Predicting Attention with Future Attention for Improved Image Captioning. [paper]
  • RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning. [paper]
  • Diverse Image Captioning with Context-Object Split Latent Spaces. [paper]

ECCV-2020

Image Captioning

  • Compare and Reweight: Distinctive Image Captioning Using Similar Images Sets. oral [paper]
  • In-Home Daily-Life Captioning Using Radio Signals. oral [paper] [website]
  • TextCaps: a Dataset for Image Captioning with Reading Comprehension. oral [paper] [website] [code]
  • SODA: Story Oriented Dense Video Captioning Evaluation Framework. [paper]
  • Towards Unique and Informative Captioning of Images. [paper]
  • Learning Visual Representations with Caption Annotations. [paper] [website]
  • Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. [paper]
  • Length Controllable Image Captioning. [paper] [code]
  • Comprehensive Image Captioning via Scene Graph Decomposition. [paper] [website]
  • Finding It at Another Side: A Viewpoint-Adapted Matching Encoder for Change Captioning. [paper]
  • Captioning Images Taken by People Who Are Blind. [paper]
  • Learning to Generate Grounded Visual Captions without Localization Supervision. [paper] [code]

Video Captioning

  • Learning Modality Interaction for Temporal Sentence Localization and Event Captioning in Videos. Spotlight [paper] [code]
  • Character Grounding and Re-Identification in Story of Videos and Text Descriptions. Spotlight [paper] [code]
  • Identity-Aware Multi-Sentence Video Description. [paper]

CVPR-2020

Image Captioning

  • Context-Aware Group Captioning via Self-Attention and Contrastive Features [paper]
    Zhuowan Li, Quan Tran, Long Mai, Zhe Lin, Alan L. Yuille
  • More Grounded Image Captioning by Distilling Image-Text Matching Model [paper] [code]
    Yuanen Zhou, Meng Wang, Daqing Liu, Zhenzhen Hu, Hanwang Zhang
  • Show, Edit and Tell: A Framework for Editing Image Captions [paper] [code]
    Fawaz Sammani, Luke Melas-Kyriazi
  • Say As You Wish: Fine-Grained Control of Image Caption Generation With Abstract Scene Graphs [paper] [code]
    Shizhe Chen, Qin Jin, Peng Wang, Qi Wu
  • Normalized and Geometry-Aware Self-Attention Network for Image Captioning [paper]
    Longteng Guo, Jing Liu, Xinxin Zhu, Peng Yao, Shichen Lu, Hanqing Lu
  • Meshed-Memory Transformer for Image Captioning [paper] [code]
    Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, Rita Cucchiara
  • X-Linear Attention Networks for Image Captioning [paper] [code]
    Yingwei Pan, Ting Yao, Yehao Li, Tao Mei
  • Transform and Tell: Entity-Aware News Image Captioning [paper] [code] [website]
    Alasdair Tran, Alexander Mathews, Lexing Xie

Video Captioning

  • Object Relational Graph With Teacher-Recommended Learning for Video Captioning [paper]
    Ziqi Zhang, Yaya Shi, Chunfeng Yuan, Bing Li, Peijin Wang, Weiming Hu, Zheng-Jun Zha

  • Spatio-Temporal Graph for Video Captioning With Knowledge Distillation [paper] [code]
    Boxiao Pan, Haoye Cai, De-An Huang, Kuan-Hui Lee, Adrien Gaidon, Ehsan Adeli, Juan Carlos Niebles

  • Better Captioning With Sequence-Level Exploration [paper]
    Jia Chen, Qin Jin

  • Syntax-Aware Action Targeting for Video Captioning [code]
    Qi Zheng, Chaoyue Wang, Dacheng Tao

ACL-2020

Image Captioning

  • Clue: Cross-modal Coherence Modeling for Caption Generation [paper]
    Malihe Alikhani, Piyush Sharma, Shengjie Li, Radu Soricut and Matthew Stone

  • Improving Image Captioning Evaluation by Considering Inter References Variance [paper]
    Yanzhi Yi, Hangyu Deng and Jinglu Hu

  • Improving Image Captioning with Better Use of Caption [paper] [code]
    Zhan Shi, Xu Zhou, Xipeng Qiu and Xiaodan Zhu

Video Captioning

  • MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning [paper] [code]
    Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara Berg and Mohit Bansal

AAAI-2020

Image Captioning

  • Unified VLP: Unified Vision-Language Pre-Training for Image Captioning and VQA [paper]
    Luowei Zhou (University of Michigan); Hamid Palangi (Microsoft Research); Lei Zhang (Microsoft); Houdong Hu (Microsoft AI and Research); Jason Corso (University of Michigan); Jianfeng Gao (Microsoft Research)

  • OffPG: Reinforcing an Image Caption Generator using Off-line Human Feedback [paper]
    Paul Hongsuck Seo (POSTECH); Piyush Sharma (Google Research); Tomer Levinboim (Google); Bohyung Han(Seoul National University); Radu Soricut (Google)

  • MemCap: Memorizing Style Knowledge for Image Captioning [paper]
    Wentian Zhao (Beijing Institute of Technology); Xinxiao Wu (Beijing Institute of Technology); Xiaoxun Zhang(Alibaba Group)

  • C-R Reasoning: Joint Commonsense and Relation Reasoning for Image and Video Captioning [paper]
    Jingyi Hou (Beijing Institute of Technology); Xinxiao Wu (Beijing Institute of Technology); Xiaoxun Zhang (AlibabaGroup); Yayun Qi (Beijing Institute of Technology); Yunde Jia (Beijing Institute of Technology); Jiebo Luo (University of Rochester)

  • MHTN: Learning Long- and Short-Term User Literal-Preference with Multimodal Hierarchical Transformer Network for Personalized Image Caption [paper]
    Wei Zhang (East China Normal University); Yue Ying (East China Normal University); Pan Lu (The University of California, Los Angeles); Hongyuan Zha (GEORGIA TECH)

  • Show, Recall, and Tell: Image Captioning with Recall Mechanism [paper]
    Li WANG (MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China); Zechen BAI(Institute of Software, Chinese Academy of Science, China); Yonghua Zhang (Bytedance); Hongtao Lu (Shanghai Jiao Tong University)

  • Interactive Dual Generative Adversarial Networks for Image Captioning
    Junhao Liu (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences); Kai Wang (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences); Chunpu Xu (Huazhong University of Science and Technology); Zhou Zhao (Zhejiang University); Ruifeng Xu (Harbin Institute of Technology (Shenzhen)); Ying Shen (Peking University Shenzhen Graduate School); Min Yang ( Chinese Academy of Sciences)

  • FDM-net: Feature Deformation Meta-Networks in Image Captioning of Novel Objects [paper]
    Tingjia Cao (Fudan University); Ke Han (Fudan University); Xiaomei Wang (Fudan University); Lin Ma (Tencent AI Lab); Yanwei Fu (Fudan University); Yu-Gang Jiang (Fudan University); Xiangyang Xue (Fudan University)

Video Captioning

  • An Efficient Framework for Dense Video Captioning
    Maitreya Suin (Indian Institute of Technology Madras)*; Rajagopalan Ambasamudram (Indian Institute of Technology Madras)

ACL-2019

  • Informative Image Captioning with External Sources of Information [paper]
    Sanqiang Zhao, Piyush Sharma, Tomer Levinboim and Radu Soricut

  • Dense Procedure Captioning in Narrated Instructional Videos [paper]
    Botian Shi, Lei Ji, Yaobo Liang, Nan Duan, Peng Chen, Zhendong Niu and Ming Zhou

  • Bridging by Word: Image Grounded Vocabulary Construction for Visual Captioning [paper]
    Zhihao Fan, Zhongyu Wei, Siyuan Wang and Xuanjing Huang

  • Bridging by Word: Image Grounded Vocabulary Construction for Visual Captioning [paper]
    Zhihao Fan, Zhongyu Wei, Siyuan Wang and Xuanjing Huang

  • Generating Question Relevant Captions to Aid Visual Question Answering [paper]
    Jialin Wu, Zeyuan Hu and Raymond Mooney

  • Bridging by Word: Image Grounded Vocabulary Construction for Visual Captioning [paper]
    Zhihao Fan, Zhongyu Wei, Siyuan Wang and Xuanjing Huang

NeurIPS-2019

Image Captioning

  • AAT: Adaptively Aligned Image Captioning via Adaptive Attention Time [paper] [code]
    Lun Huang, Wenmin Wang, Yaxian Xia, Jie Chen
  • ObjRel Transf: Image Captioning: Transforming Objects into Words [paper] [code]
    Simao Herdade, Armin Kappeler, Kofi Boakye, Joao Soares
  • VSSI-cap: Variational Structured Semantic Inference for Diverse Image Captioning [paper]
    Fuhai Chen, Rongrong Ji, Jiayi Ji, Xiaoshuai Sun, Baochang Zhang, Xuri Ge, Yongjian Wu, Feiyue Huang

ICCV-2019

Video Captioning

  • VATEX: A Large-Scale, High-Quality Multilingual Dataset for Video-and-Language Research [paper] [challenge]
    Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, William Yang Wang
    ICCV 2019 Oral

  • POS+CG: Controllable Video Captioning With POS Sequence Guidance Based on Gated Fusion Network [paper]
    Bairui Wang, Lin Ma, Wei Zhang, Wenhao Jiang, Jingwen Wang, Wei Liu

  • POS: Joint Syntax Representation Learning and Visual Cue Translation for Video Captioning [paper]
    Jingyi Hou, Xinxiao Wu, Wentian Zhao, Jiebo Luo, Yunde Jia

Image Captioning

  • DUDA: Robust Change Captioning
    Dong Huk Park, Trevor Darrell, Anna Rohrbach [paper]
    ICCV 2019 Oral

  • AoANet: Attention on Attention for Image Captioning [paper]
    Lun Huang, Wenmin Wang, Jie Chen, Xiao-Yong Wei
    ICCV 2019 Oral

  • MaBi-LSTMs: Exploring Overall Contextual Information for Image Captioning in Human-Like Cognitive Style [paper]
    Hongwei Ge, Zehang Yan, Kai Zhang, Mingde Zhao, Liang Sun

  • Align2Ground: Align2Ground: Weakly Supervised Phrase Grounding Guided by Image-Caption Alignment [paper]
    Samyak Datta, Karan Sikka, Anirban Roy, Karuna Ahuja, Devi Parikh, Ajay Divakaran*

  • GCN-LSTM+HIP: Hierarchy Parsing for Image Captioning [paper]
    Ting Yao, Yingwei Pan, Yehao Li, Tao Mei

  • IR+Tdiv: Generating Diverse and Descriptive Image Captions Using Visual Paraphrases [paper]
    Lixin Liu, Jiajun Tang, Xiaojun Wan, Zongming Guo

  • CNM+SGAE: Learning to Collocate Neural Modules for Image Captioning [paper]
    Xu Yang, Hanwang Zhang, Jianfei Cai

  • Seq-CVAE: Sequential Latent Spaces for Modeling the Intention During Diverse Image Captioning [paper]
    Jyoti Aneja, Harsh Agrawal, Dhruv Batra, Alexander Schwing

  • Towards Unsupervised Image Captioning With Shared Multimodal Embeddings [paper]
    Iro Laina, Christian Rupprecht, Nassir Navab

  • Human Attention in Image Captioning: Dataset and Analysis [paper]
    Sen He, Hamed R. Tavakoli, Ali Borji, Nicolas Pugeault

  • RDN: Reflective Decoding Network for Image Captioning [paper]
    Lei Ke, Wenjie Pei, Ruiyu Li, Xiaoyong Shen, Yu-Wing Tai

  • PSST: Joint Optimization for Cooperative Image Captioning [paper]
    Gilad Vered, Gal Oren, Yuval Atzmon, Gal Chechik

  • MUTAN: Watch, Listen and Tell: Multi-Modal Weakly Supervised Dense Event Captioning [paper]
    Tanzila Rahman, Bicheng Xu, Leonid Sigal

  • ETA: Entangled Transformer for Image Captioning [paper]
    Guang Li, Linchao Zhu, Ping Liu, Yi Yang

  • nocaps: novel object captioning at scale [paper]
    Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, Stefan Lee, Peter Anderson

  • Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection [paper]
    Keren Ye, Mingda Zhang, Adriana Kovashka, Wei Li, Danfeng Qin, Jesse Berent

  • Graph-Align: Unpaired Image Captioning via Scene Graph Alignments paper
    Jiuxiang Gu, Shafiq Joty, Jianfei Cai, Handong Zhao, Xu Yang, Gang Wang

  • : Learning to Caption Images Through a Lifetime by Asking Questions [paper]
    Tingke Shen, Amlan Kar, Sanja Fidler

CVPR-2019

Image Captioning

  • SGAE: Auto-Encoding Scene Graphs for Image Captioning [paper] [code]
    XU YANG (Nanyang Technological University); Kaihua Tang (Nanyang Technological University); Hanwang Zhang (Nanyang Technological University); Jianfei Cai (Nanyang Technological University)
    CVPR 2019 Oral

  • POS: Fast, Diverse and Accurate Image Captioning Guided by Part-Of-Speech [paper]
    Aditya Deshpande (University of Illinois at UC); Jyoti Aneja (University of Illinois, Urbana-Champaign); Liwei Wang (Tencent AI Lab); Alexander Schwing (UIUC); David Forsyth (Univeristy of Illinois at Urbana-Champaign)
    CVPR 2019 Oral

  • Unsupervised Image Captioning [paper] [code]
    Yang Feng (University of Rochester); Lin Ma (Tencent AI Lab); Wei Liu (Tencent); Jiebo Luo (U. Rochester)

  • Adversarial Attack to Image Captioning via Structured Output Learning With Latent Variables [paper]
    Yan Xu (UESTC); Baoyuan Wu (Tencent AI Lab); Fumin Shen (UESTC); Yanbo Fan (Tencent AI Lab); Yong Zhang (Tencent AI Lab); Heng Tao Shen (University of Electronic Science and Technology of China (UESTC)); Wei Liu (Tencent)

  • Describing like Humans: On Diversity in Image Captioning [paper]
    Qingzhong Wang (Department of Computer Science, City University of Hong Kong); Antoni Chan (City University of Hong Kong, Hong, Kong)

  • MSCap: Multi-Style Image Captioning With Unpaired Stylized Text [paper]
    Longteng Guo ( Institute of Automation, Chinese Academy of Sciences); Jing Liu (National Lab of Pattern Recognition, Institute of Automation,Chinese Academy of Sciences); Peng Yao (University of Science and Technology Beijing); Jiangwei Li (Huawei); Hanqing Lu (NLPR, Institute of Automation, CAS)

  • CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection [paper] [code]
    Lu Zhang (Dalian University of Technology); Huchuan Lu (Dalian University of Technology); Zhe Lin (Adobe Research); Jianming Zhang (Adobe Research); You He (Naval Aviation University)

  • Context and Attribute Grounded Dense Captioning [paper]
    Guojun Yin (University of Science and Technology of China); Lu Sheng (The Chinese University of Hong Kong); Bin Liu (University of Science and Technology of China); Nenghai Yu (University of Science and Technology of China); Xiaogang Wang (Chinese University of Hong Kong, Hong Kong); Jing Shao (Sensetime)

  • Dense Relational Captioning: Triple-Stream Networks for Relationship-Based Captioning [paper]
    Dong-Jin Kim (KAIST); Jinsoo Choi (KAIST); Tae-Hyun Oh (MIT CSAIL); In So Kweon (KAIST)

  • Show, Control and Tell: A Framework for Generating Controllable and Grounded Captions [paper]
    Marcella Cornia (University of Modena and Reggio Emilia); Lorenzo Baraldi (University of Modena and Reggio Emilia); Rita Cucchiara (Universita Di Modena E Reggio Emilia)

  • Self-Critical N-step Training for Image Captioning [paper]
    Junlong Gao (Peking University Shenzhen Graduate School); Shiqi Wang (CityU); Shanshe Wang (Peking University); Siwei Ma (Peking University, China); Wen Gao (PKU)

  • Look Back and Predict Forward in Image Captioning [paper]
    Yu Qin (Shanghai Jiao Tong University); Jiajun Du (Shanghai Jiao Tong University); Hongtao Lu (Shanghai Jiao Tong University); Yonghua Zhang (Bytedance)

  • Intention Oriented Image Captions with Guiding Objects [paper]
    Yue Zheng (Tsinghua University); Ya-Li Li (THU); Shengjin Wang (Tsinghua University)

  • Adversarial Semantic Alignment for Improved Image Captions [paper]
    Pierre Dognin (IBM); Igor Melnyk (IBM); Youssef Mroueh (IBM Research); Jarret Ross (IBM); Tom Sercu (IBM Research AI)

  • Good News, Everyone! Context driven entity-aware captioning for news images [paper] [code]
    Ali Furkan Biten (Computer Vision Center); Lluis Gomez (Universitat Autónoma de Barcelona); Marçal Rusiñol (Computer Vision Center, UAB); Dimosthenis Karatzas (Computer Vision Centre)

  • Pointing Novel Objects in Image Captioning [paper]
    Yehao Li (Sun Yat-Sen University); Ting Yao (JD AI Research); Yingwei Pan (JD AI Research); Hongyang Chao (Sun Yat-sen University); Tao Mei (AI Research of JD.com)

  • Engaging Image Captioning via Personality [paper]
    Kurt Shuster (Facebook); Samuel Humeau (Facebook); Hexiang Hu (USC); Antoine Bordes (Facebook); Jason Weston (FAIR)

  • Intention Oriented Image Captions With Guiding Objects [paper]
    Yue Zheng, Yali Li, Shengjin Wang

  • Exact Adversarial Attack to Image Captioning via Structured Output Learning With Latent Variables [paper]
    Yan Xu, Baoyuan Wu, Fumin Shen, Yanbo Fan, Yong Zhang, Heng Tao Shen, Wei Liu

Video Captioning

  • SDVC: Streamlined Dense Video Captioning [paper]
    Jonghwan Mun (POSTECH); Linjie Yang (ByteDance AI Lab); Zhou Ren (Snap Inc.); Ning Xu (Snap); Bohyung Han (Seoul National University)
    CVPR 2019 Oral

  • GVD: Grounded Video Description [paper]
    Luowei Zhou (University of Michigan); Yannis Kalantidis (Facebook Research); Xinlei Chen (Facebook AI Research); Jason J Corso (University of Michigan); Marcus Rohrbach (Facebook AI Research)
    CVPR 2019 Oral

  • HybridDis: Adversarial Inference for Multi-Sentence Video Description [paper]
    Jae Sung Park (UC Berkeley); Marcus Rohrbach (Facebook AI Research); Trevor Darrell (UC Berkeley); Anna Rohrbach (UC Berkeley)
    CVPR 2019 Oral

  • OA-BTG: Object-aware Aggregation with Bidirectional Temporal Graph for Video Captioning [paper]
    Junchao Zhang (Peking University); Yuxin Peng (Peking University)

  • MARN: Memory-Attended Recurrent Network for Video Captioning [paper]
    Wenjie Pei (Tencent); Jiyuan Zhang (Tencent YouTu); Xiangrong Wang (Delft University of Technology); Lei Ke (Tencent); Xiaoyong Shen (Tencent); Yu-Wing Tai (Tencent)

  • GRU-EVE: Spatio-Temporal Dynamics and Semantic Attribute Enriched Visual Encoding for Video Captioning [paper]
    Nayyer Aafaq (The University of Western Australia); Naveed Akhtar (The University of Western Australia); Wei Liu (University of Western Australia); Syed Zulqarnain Gilani (The University of Western Australia); Ajmal Mian (University of Western Australia)

AAAI-2019

Image Captioning

  • Improving Image Captioning with Conditional Generative Adversarial Nets [paper]
    CHEN CHEN (Tencent); SHUAI MU (Tencent); WANPENG XIAO (Tencent); ZEXIONG YE (Tencent); LIESI WU (Tencent); QI JU (Tencent)
    AAAI 2019 Oral
  • PAGNet: Connecting Language to Images: A Progressive Attention-Guided Network for Simultaneous Image Captioning and Language Grounding [paper]
    Lingyun Song (Xi'an JiaoTong University); Jun Liu (Xi'an Jiaotong Univerisity); Buyue Qian (Xi'an Jiaotong University); Yihe Chen (University of Toronto)
    AAAI 2019 Oral
  • Meta Learning for Image Captioning [paper]
    Nannan Li (Wuhan University); Zhenzhong Chen (WHU); Shan Liu (Tencent America)
  • DA: Deliberate Residual based Attention Network for Image Captioning [paper] Lianli Gao (The University of Electronic Science and Technology of China); kaixuan fan (University of Electronic Science and Technology of China); Jingkuan Song (UESTC); Xianglong Liu (Beihang University); Xing Xu (University of Electronic Science and Technology of China); Heng Tao Shen (University of Electronic Science and Technology of China (UESTC))
  • HAN: Hierarchical Attention Network for Image Captioning [paper]
    Weixuan Wang (School of Electronic and Information Engineering, Sun Yat-sen University);Zhihong Chen (School of Electronic and Information Engineering, Sun Yat-sen University); Haifeng Hu (School of Electronic and Information Engineering, Sun Yat-sen University)
  • COCG: Learning Object Context for Dense Captioning [paper]
    Xiangyang Li (Institute of Computing Technology, Chinese Academy of Sciences); Shuqiang Jiang (ICT, China Academy of Science); Jungong Han (Lancaster University)

Video Captioning

  • TAMoE: Learning to Compose Topic-Aware Mixture of Experts for Zero-Shot Video Captioning [code] [paper]
    Xin Wang (University of California, Santa Barbara); Jiawei Wu (University of California, Santa Barbara); Da Zhang (UC Santa Barbara); Yu Su (OSU); William Wang (UC Santa Barbara)
    AAAI 2019 Oral

  • TDConvED: Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning [paper]
    Jingwen Chen (Sun Yat-set University); Yingwei Pan (JD AI Research); Yehao Li (Sun Yat-Sen University); Ting Yao (JD AI Research); Hongyang Chao (Sun Yat-sen University); Tao Mei (AI Research of JD.com)
    AAAI 2019 Oral

  • FCVC-CF&IA: Fully Convolutional Video Captioning with Coarse-to-Fine and Inherited Attention [paper]
    Kuncheng Fang (Fudan University); Lian Zhou (Fudan University); Cheng Jin (Fudan University); Yuejie Zhang (Fudan University); Kangnian Weng (Shanghai University of Finance and Economics); Tao Zhang (Shanghai University of Finance and Economics); Weiguo Fan (University of Iowa)

  • MGSA: Motion Guided Spatial Attention for Video Captioning [paper]
    Shaoxiang Chen (Fudan University); Yu-Gang Jiang (Fudan University)

Owner
Ziqi Zhang
Ziqi Zhang
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022