Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Overview

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

This repository hosts the code related to the paper:

Marco Rosano, Antonino Furnari, Luigi Gulino, Corrado Santoro and Giovanni Maria Farinella, "Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation". Submitted to "Robotics and Autonomous Systems" (RAS), 2022.

For more details please see the project web page at https://iplab.dmi.unict.it/EmbodiedVN.

Overview

This code is built on top of the Habitat-api/Habitat-lab project. Please see the Habitat project page for more details.

This repository provides the following components:

  1. The implementation of the proposed tool, integrated with Habitat, to train visual navigation models on synthetic observations and test them on realistic episodes containing real-world images. This allows the estimation of real-world performance, avoiding the physical deployment of the robotic agent;

  2. The official PyTorch implementation of the proposed visual navigation models, which follow different strategies to combine a range of visual mid-level representations

  3. the synthetic 3D model of the proposed environment, acquired using the Matterport 3D scanner and used to perform the navigation episodes at train and test time;

  4. the photorealistic 3D model that contains real-world images of the proposed environment, labeled with their pose (X, Z, Angle). The sparse 3D reconstruction was performed using the COLMAP Structure from Motion tool, to then be aligned with the Matterport virtual 3D map.

  5. An integration with CycleGAN to train and evaluate navigation models with Habitat on sim2real adapted images.

  6. The checkpoints of the best performing navigation models.

Installation

Requirements

  • Python >= 3.7, use version 3.7 to avoid possible issues.
  • Other requirements will be installed via pip in the following steps.

Steps

  1. (Optional) Create an Anaconda environment and install all on it ( conda create -n fusion-habitat python=3.7; conda activate fusion-habitat )

  2. Install the Habitat simulator following the official repo instructions .The development and testing was done on commit bfbe9fc30a4e0751082824257d7200ad543e4c0e, installing the simulator "from source", launching the ./build.sh --headless --with-cuda command (guide). Please consider to follow these suggestions if you encounter issues while installing the simulator.

  3. Install the customized Habitat-lab (this repo):

    git clone https://github.com/rosanom/mid-level-fusion-nav.git
    cd mid-level-fusion-nav/
    pip install -r requirements.txt
    python setup.py develop --all # install habitat and habitat_baselines
    
  4. Download our dataset (journal version) from here, and extract it to the repository folder (mid-level-fusion-nav/). Inside the data folder you should see this structure:

    datasets/pointnav/orangedev/v1/...
    real_images/orangedev/...
    scene_datasets/orangedev/...
    orangedev_checkpoints/...
    
  5. (Optional, to check if the software works properly) Download the test scenes data and extract the zip file to the repository folder (mid-level-fusion-nav/). To verify that the tool was successfully installed, run python examples/benchmark.py or python examples/example.py.

Data Structure

All data can be found inside the mid-level-fusion-nav/data/ folder:

  • the datasets/pointnav/orangedev/v1/... folder contains the generated train and validation navigation episodes files;
  • the real_images/orangedev/... folder contains the real world images of the proposed environment and the csv file with their pose information (obtained with COLMAP);
  • the scene_datasets/orangedev/... folder contains the 3D mesh of the proposed environment.
  • orangedev_checkpoints/ is the folder where the checkpoints are saved during training. Place the checkpoint file here if you want to restore the training process or evaluate the model. The system will load the most recent checkpoint file.

Config Files

There are two configuration files:

habitat_domain_adaptation/configs/tasks/pointnav_orangedev.yaml

and

habitat_domain_adaptation/habitat_baselines/config/pointnav/ddppo_pointnav_orangedev.yaml.

In the first file you can change the robot's properties, the sensors used by the agent and the dataset used in the experiment. You don't have to modify it.

In the second file you can decide:

  1. if evaluate the navigation models using RGB or mid-level representations;
  2. the set of mid-level representations to use;
  3. the fusion architecture to use;
  4. if train or evaluate the models using real images, or using the CycleGAN sim2real adapted observations.
...
EVAL_W_REAL_IMAGES: True
EVAL_CKPT_PATH_DIR: "data/orangedev_checkpoints/"

SIM_2_REAL: False #use cycleGAN for sim2real image adaptation?

USE_MIDLEVEL_REPRESENTATION: True
MIDLEVEL_PARAMS:
ENCODER: "simple" # "simple", SE_attention, "mid_fusion", ...
FEATURE_TYPE: ["normal"] #["normal", "keypoints3d","curvature", "depth_zbuffer"]
...

CycleGAN Integration (baseline)

In order to use CycleGAN on Habitat for the sim2real domain adaptation during train or evaluation, follow the steps suggested in the repository of our previous resease.

Train and Evaluation

To train the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev.sh

To evaluate the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev_eval.sh

For more information about DD-PPO RL algorithm, please check out the habitat-lab dd-ppo repo page.

License

The code in this repository, the 3D models and the images of the proposed environment are MIT licensed. See the LICENSE file for details.

The trained models and the task datasets are considered data derived from the correspondent scene datasets.

Acknowledgements

This research is supported by OrangeDev s.r.l, by Next Vision s.r.l, the project MEGABIT - PIAno di inCEntivi per la RIcerca di Ateneo 2020/2022 (PIACERI) – linea di intervento 2, DMI - University of Catania, and the grant MIUR AIM - Attrazione e Mobilità Internazionale Linea 1 - AIM1893589 - CUP E64118002540007.

Owner
First Person Vision @ Image Processing Laboratory - University of Catania
First Person Vision @ Image Processing Laboratory - University of Catania
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022