Framework for evaluating ANNS algorithms on billion scale datasets.

Overview

Billion-Scale ANN

http://big-ann-benchmarks.com/

Install

The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Python as well but probably requires an updated requirements.txt on the host. (Suggestion: copy requirements.txt to requirements${PYTHON_VERSION}.txt and remove all fixed versions. requirements.txt has to be kept for the docker containers.)

  1. Clone the repo.
  2. Run pip install -r requirements.txt (Use requirements_py38.txt if you have Python 3.8.)
  3. Install docker by following instructions here. You might also want to follow the post-install steps for running docker in non-root user mode.
  4. Run python install.py to build all the libraries inside Docker containers.

Storing Data

The framework assumes that all data is stored in data/. Please use a symlink if your datasets and indices are supposed to be stored somewhere else. The location of the linked folder matters a great deal for SSD-based search performance in T2. A local SSD such as the one found on Azure Ls-series VMs is better than remote disks, even premium ones. See T1/T2 for more details.

Data sets

See http://big-ann-benchmarks.com/ for details on the different datasets.

Dataset Preparation

Before running experiments, datasets have to be downloaded. All preparation can be carried out by calling

python create_dataset.py --dataset [bigann-1B | deep-1B | text2image-1B | ssnpp-1B | msturing-1B | msspacev-1B]

Note that downloading the datasets can potentially take many hours.

For local testing, there exist smaller random datasets random-xs and random-range-xs. Furthermore, most datasets have 1M, 10M and 100M versions, run python create_dataset -h to get an overview.

Running the benchmark

Run python run.py --dataset $DS --algorithm $ALGO where DS is the dataset you are running on, and ALGO is the name of the algorithm. (Use python run.py --list-algorithms) to get an overview. python run.py -h provides you with further options.

The parameters used by the implementation to build and query the index can be found in algos.yaml.

Running the track 1 baseline

After running the installation, we can evaluate the baseline as follows.

for DS in bigann-1B  deep-1B  text2image-1B  ssnpp-1B  msturing-1B  msspacev-1B;
do
    python run.py --dataset $DS --algorithm faiss-t1;
done

On a 28-core Xeon E5-2690 v4 that provided 100MB/s downloads, carrying out the baseline experiments took roughly 7 days.

To evaluate the results, run

sudo chmod -R 777 results/
python data_export.py --output res.csv
python3.8 eval/show_operating_points.py --algorithm faiss-t1 --threshold 10000

Including your algorithm and Evaluating the Results

See Track T1/T2 for more details on evaluation for Tracks T1 and T2.

See Track T3 for more details on evaluation for Track T3.

Credits

This project is a version of ann-benchmarks by Erik Bernhardsson and contributors targetting billion-scale datasets.

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022