Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

Related tags

Deep Learningmetasdf
Overview

MetaSDF: Meta-learning Signed Distance Functions

Project Page | Paper | Data

Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely
Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "MetaSDF: Meta-Learning Signed Distance Functions".

In this paper, we show how we may effectively learn a prior over implicit neural representations using gradient-based meta-learning.

While in the paper, we show this for the special case of SDFs with the ReLU nonlinearity, this works formidably well with other types of neural implicit representations - such as our work "SIREN"!

We show you how in our Colab notebook:

Explore MetaSDF in Colab

DeepSDF

A large part of this codebase (directory "3D") is based on the code from the terrific paper "DeepSDF" - check them out!

Get started

If you only want to experiment with MetaSDF, we have written a colab that doesn't require installing anything, and goes through a few other interesting properties of MetaSDF as well - for instance, it turns out you can train SIREN to fit any image in only just three gradient descent steps!

If you want to reproduce all the experiments from the paper, you can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate metasdf

3D Experiments

Dataset Preprocessing

Before training a model, you'll first need to preprocess the training meshes. Please follow the preprocessing steps used by DeepSDF if using ShapeNet.

Define an Experiment

Next, you'll need to define the model and hyperparameters for your experiment. Examples are given in 3D/curriculums.py, but feel free to make modifications. Although not present in the original paper, we've included some curriculums with positional encodings and smaller models. These generally perform on par with the original models but require much less memory.

Train a Model

After you've preprocessed your data and have defined your curriculum, you're ready to start training! Navigate to the 3D/scripts directory and run

python run_train.py <curriculum name>.

If training is interupted, pass the flag --load flag to continue training from where you left off.

You should begin seeing printouts of loss, with a summary at every epoch. Checkpoints and Tensorboard summaries are saved to the 'output_dir' directory, as defined in your curriculum. We log raw loss, which is either the composite loss or L1 loss, depending on your experiment definition, as well as a 'Misclassified Percentage'. The 'Misclassified Percentage' is the percentage of samples that the model incorrectly classified as inside or outside the mesh.

Reconstructing Meshes

After training a model, recontruct some meshes using

python run_reconstruct.py <curriculum name> --checkpoint <checkpoint file name>.

The script will use the 'test_split' as defined in the curriculum.

Evaluating Reconstructions

After reconstructing meshes, calculate Chamfer Distances between reconstructions and ground-truth meshes by running

python run_eval.py <reconstruction dir>.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks.

Citation

If you find our work useful in your research, please cite:

       @inproceedings{sitzmann2019metasdf,
            author = {Sitzmann, Vincent
                      and Chan, Eric R.
                      and Tucker, Richard
                      and Snavely, Noah
                      and Wetzstein, Gordon},
            title = {MetaSDF: Meta-Learning Signed
                     Distance Functions},
            booktitle = {Proc. NeurIPS},
            year={2020}
       }

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
I'm researching 3D-structured neural scene representations. Ph.D. student in Stanford's Computational Imaging Group.
Vincent Sitzmann
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022