A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

Overview

funk-svd Build Status License

funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize contest.

Numba is used to speed up our algorithm, enabling us to run over 10 times faster than Surprise's Cython implementation (cf. benchmark notebook).

Movielens 20M RMSE MAE Time
Surprise 0.88 0.68 10 min 40 sec
Funk-svd 0.88 0.68 42 sec

Installation

Run pip install git+https://github.com/gbolmier/funk-svd in your terminal.

Contributing

All contributions, bug reports, bug fixes, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributor guide.

Quick example

run_experiment.py:

>>> from funk_svd.dataset import fetch_ml_ratings
>>> from funk_svd import SVD

>>> from sklearn.metrics import mean_absolute_error


>>> df = fetch_ml_ratings(variant='100k')

>>> train = df.sample(frac=0.8, random_state=7)
>>> val = df.drop(train.index.tolist()).sample(frac=0.5, random_state=8)
>>> test = df.drop(train.index.tolist()).drop(val.index.tolist())

>>> svd = SVD(lr=0.001, reg=0.005, n_epochs=100, n_factors=15,
...           early_stopping=True, shuffle=False, min_rating=1, max_rating=5)

>>> svd.fit(X=train, X_val=val)
Preprocessing data...

Epoch 1/...

>>> pred = svd.predict(test)
>>> mae = mean_absolute_error(test['rating'], pred)

>>> print(f'Test MAE: {mae:.2f}')
Test MAE: 0.75

Funk SVD for recommendation in a nutshell

We have a huge sparse matrix:

storing known ratings for a set of users and items:

The idea is to estimate unknown ratings by factorizing the rating matrix into two smaller matrices representing user and item characteristics:

We call these two matrices users and items latent factors. Then, by applying the dot product between both matrices we can reconstruct our rating matrix. The trick is that the empty values will now contain estimated ratings.

In order to get more accurate results, the global average rating as well as the user and item biases are used in addition:

where K stands for known ratings.

Then, we can estimate any rating by applying:

The learning step consists in performing the SGD algorithm where for each known rating the biases and latent factors are updated as follows:

where alpha is the learning rate and lambda is the regularization term.

References

License

MIT license, see here.

Owner
Geoffrey Bolmier
Geoffrey Bolmier
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
Uber Open Source 1.6k Dec 31, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022