Traingenerator 🧙 A web app to generate template code for machine learning ✨

Overview

Traingenerator

🧙   A web app to generate template code for machine learning

Gitter Heroku Code style: black



🎉 Traingenerator is now live! 🎉

Try it out:
https://traingenerator.jrieke.com


Generate custom template code for PyTorch & sklearn, using a simple web UI built with streamlit. Traingenerator offers multiple options for preprocessing, model setup, training, and visualization (using Tensorboard or comet.ml). It exports to .py, Jupyter Notebook, or Google Colab. The perfect tool to jumpstart your next machine learning project!


For updates, follow me on Twitter, and if you like this project, please consider sponsoring




Adding new templates

You can add your own template in 4 easy steps (see below), without changing any code in the app itself. Your new template will be automatically discovered by Traingenerator and shown in the sidebar. That's it! 🎈

Want to share your magic? 🧙 PRs are welcome! Please have a look at CONTRIBUTING.md and write on Gitter.

Some ideas for new templates: Keras/Tensorflow, Pytorch Lightning, object detection, segmentation, text classification, ...

  1. Create a folder under ./templates. The folder name should be the task that your template solves (e.g. Image classification). Optionally, you can add a framework name (e.g. Image classification_PyTorch). Both names are automatically shown in the first two dropdowns in the sidebar (see image). Tip: Copy the example template to get started more quickly.
  2. Add a file sidebar.py to the folder (see example). It needs to contain a method show(), which displays all template-specific streamlit components in the sidebar (i.e. everything below Task) and returns a dictionary of user inputs.
  3. Add a file code-template.py.jinja to the folder (see example). This Jinja2 template is used to generate the code. You can write normal Python code in it and modify it (through Jinja) based on the user inputs in the sidebar (e.g. insert a parameter value from the sidebar or show different code parts based on the user's selection).
  4. Optional: Add a file test-inputs.yml to the folder (see example). This simple YAML file should define a few possible user inputs that can be used for testing. If you run pytest (see below), it will automatically pick up this file, render the code template with its values, and check that the generated code runs without errors. This file is optional – but it's required if you want to contribute your template to this repo.

Installation

Note: You only need to install Traingenerator if you want to contribute or run it locally. If you just want to use it, go here.

git clone https://github.com/jrieke/traingenerator.git
cd traingenerator
pip install -r requirements.txt

Optional: For the "Open in Colab" button to work you need to set up a Github repo where the notebook files can be stored (Colab can only open public files if they are on Github). After setting up the repo, create a file .env with content:

GITHUB_TOKEN=<your-github-access-token>
REPO_NAME=<user/notebooks-repo>

If you don't set this up, the app will still work but the "Open in Colab" button will only show an error message.

Running locally

streamlit run app/main.py

Make sure to run always from the traingenerator dir (not from the app dir), otherwise the app will not be able to find the templates.

Deploying to Heroku

First, install heroku and login. To create a new deployment, run inside traingenerator:

heroku create
git push heroku main
heroku open

To update the deployed app, commit your changes and run:

git push heroku main

Optional: If you set up a Github repo to enable the "Open in Colab" button (see above), you also need to run:

heroku config:set GITHUB_TOKEN=
   
    
heroku config:set REPO_NAME=
    

    
   

Testing

First, install pytest and required plugins via:

pip install -r requirements-dev.txt

To run all tests:

pytest ./tests

Note that this only tests the code templates (i.e. it renders them with different input values and makes sure that the code executes without error). The streamlit app itself is not tested at the moment.

You can also test an individual template by passing the name of the template dir to --template, e.g.:

pytest ./tests --template "Image classification_scikit-learn"

The mage image used in Traingenerator is from Twitter's Twemoji library and released under Creative Commons Attribution 4.0 International Public License.

Owner
Johannes Rieke
Product manager dev experience @streamlit
Johannes Rieke
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021