Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Overview

Databricks Certification Spark

Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks. This is extensively used as part of our Udemy courses as well as our upcoming guided programs related to Databricks Certified Associate Spark Developer.

Udemy Courses

This GitHub repository can be leveraged to setup Single Node Spark Cluster using Standalone along with Jupyterlab to prepare for the Databricks Certified Associate Developer - Apache Spark. They are available at a max of $25 and we provide $10 coupons 2 times every month. Also, these courses are part of Udemy for business.

Technologies Covered

As part of this custom image built by us, we have included the following as a preparation toolkit for Databricks Certified Associate Developer - Apache Spark.

  • Apache Spark 3 using Spark Stand Alone Cluster
  • Jupyter based environment along with material for the preparation towards Databricks Certified Associate Developer - Apache Spark
  • If you set up the environment as instructed as part of our courses then you will also get the data sets as well as material in the form of Jupyter Notebooks.

For all video lectures, up-to-date material, live support - feel free to sign up for our Udemy courses or our upcoming guided programs.

Setup Spark Lab for Databricks Certified Associate Developer - Apache Spark

Pre-requisites

Here are the pre-requisites to setup the lab.

  • Memory: 16 GB RAM
  • CPU: At least Quadcore
  • If you are using Windows or Mac, make sure to setup Docker Desktop.
  • If your system does not meet the requirement, you need to setup environment using AWS Cloud9.
  • Even if you have 16 GB RAM and the Quadcore CPU, the system might slow down once we start the docker containers due to the requirements of the resources. You can always use AWS Cloud9 as fallback option.
  • In my case, I will be demonstrating using Cloud9.

Configure Docker Desktop

If you are using Windows or Mac, you need to change the settings to use as much resources as possible.

  • Go to Docker Desktop preferences.
  • Change memory to 12 GB.
  • Change CPUs to the maximum number.

Setup Environment

Here are the steps one need to follow to setup the lab.

  • Clone the repository by running git clone https://github.com/itversity/databricks-certification-spark.

Pull the Image

Spark image is of moderate size. It is close to 1.5 GB.

  • Make sure to pull it before running docker-compose command to setup the lab.
  • You can pull the image using docker pull itversity/itvspark3.
  • You can validate if the image is successfully pulled or not by running docker images command.

Start Environment

Here are the steps to start the environment.

  • Run docker-compose up -d --build itvspark3.
  • It will set up single node Stand Alone Spark Cluster.
  • You can run docker-compose logs -f itvspark3 to review the progress. It will take some time to complete the setup process.
  • You can stop the environment using docker-compose stop command.

Access the Lab

Here are the steps to access the lab.

  • Make sure both Postgres and Jupyter Lab containers are up and running by using docker-compose ps
  • Get the token from the Jupyter Lab container using below command.
docker-compose exec itvspark3 \
  sh -c "cat .local/share/jupyter/runtime/jpserver-*.json"

Access Databricks Certified Associate Developer - Apache Spark Material

Once you login, you should be able to go through the module under itversity-material to access the content.

Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022