Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

Related tags

Deep Learning2s-AGCN
Overview

2s-AGCN

Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

Note

PyTorch version should be 0.3! For PyTorch0.4 or higher, the codes need to be modified.
Now we have updated the code to >=Pytorch0.4.
A new model named AAGCN is added, which can achieve better performance.

Data Preparation

  • Download the raw data from NTU-RGB+D and Skeleton-Kinetics. Then put them under the data directory:

     -data\  
       -kinetics_raw\  
         -kinetics_train\
           ...
         -kinetics_val\
           ...
         -kinetics_train_label.json
         -keintics_val_label.json
       -nturgbd_raw\  
         -nturgb+d_skeletons\
           ...
         -samples_with_missing_skeletons.txt
    
  • Preprocess the data with

    python data_gen/ntu_gendata.py

    python data_gen/kinetics-gendata.py.

  • Generate the bone data with:

    python data_gen/gen_bone_data.py

Training & Testing

Change the config file depending on what you want.

`python main.py --config ./config/nturgbd-cross-view/train_joint.yaml`

`python main.py --config ./config/nturgbd-cross-view/train_bone.yaml`

To ensemble the results of joints and bones, run test firstly to generate the scores of the softmax layer.

`python main.py --config ./config/nturgbd-cross-view/test_joint.yaml`

`python main.py --config ./config/nturgbd-cross-view/test_bone.yaml`

Then combine the generated scores with:

`python ensemble.py` --datasets ntu/xview

Citation

Please cite the following paper if you use this repository in your reseach.

@inproceedings{2sagcn2019cvpr,  
      title     = {Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition},  
      author    = {Lei Shi and Yifan Zhang and Jian Cheng and Hanqing Lu},  
      booktitle = {CVPR},  
      year      = {2019},  
}

@article{shi_skeleton-based_2019,
    title = {Skeleton-{Based} {Action} {Recognition} with {Multi}-{Stream} {Adaptive} {Graph} {Convolutional} {Networks}},
    journal = {arXiv:1912.06971 [cs]},
    author = {Shi, Lei and Zhang, Yifan and Cheng, Jian and LU, Hanqing},
    month = dec,
    year = {2019},
}

Contact

For any questions, feel free to contact: [email protected]

Comments
  • Memory overloading issue

    Memory overloading issue

    First of all, thanks a lot for making your code public. I am trying to do the experiment on NTU RGB D 120 dataset and I have split the data into training and testing in CS as given in the NTU-RGB D 120 paper. I have 63026 training samples and 54702 testing samples. I am trying to train the model on a GPU cluster but after running for one epoch, my model exceeds the memory limit: image I try to clear the cache explicitly using gc.collect but the model still continues to grow in size. It will be great if you can help regarding this.

    opened by Anirudh257 46
  • I got some wrong when I was training the net

    I got some wrong when I was training the net

    首先我是得到了下面这个error, 1

    注释掉该参数后,got another error

    I got this error ,but I don't know how to solve. Could you give me some advice?

    Traceback (most recent call last): File "/home/sues/Desktop/2s-AGCN-master/main.py", line 550, in processor.start() File "/home/sues/Desktop/2s-AGCN-master/main.py", line 491, in start self.train(epoch, save_model=save_model) File "/home/sues/Desktop/2s-AGCN-master/main.py", line 372, in train loss.backward() File "/home/sues/anaconda3/envs/2sAGCN/lib/python3.5/site-pac[kages/torch/autograd/variable.py", line 167, in backward torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables) File "/home/sues/anaconda3/envs/2sAGCN/lib/python3.5/site-packages/torch/autograd/init.py", line 99, in backward variables, grad_variables, retain_graph) RuntimeError: cuda runtime error (59) : device-side assert triggered at /pytorch/torch/lib/THC/generic/THCTensorMath.cu:26 /pytorch/torch/lib/THCUNN/ClassNLLCriterion.cu:101: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]: block: [0,0,0], thread: [0,0,0] Assertion `t >= 0 && t < n_classes 2

    opened by Dongjiuqing 10
  • 内存分配不够,Unable to allocate 29.0 GiB for an array with shape (7790126400,) and data type float32

    内存分配不够,Unable to allocate 29.0 GiB for an array with shape (7790126400,) and data type float32

    当运行python data_gen/gen_bone_data.py这据代码时,会在 File "data_gen/gen_bone_data.py", line 62, in data = np.load('./data/{}/{}_data.npy'.format(dataset, set)) 处遇到 MemoryError: Unable to allocate 29.0 GiB for an array with shape (7790126400,) and data type float32 这样的错误,请问该如何解决呢?

    opened by XieLinMofromsomewhere 7
  • augmentation in feeder

    augmentation in feeder

    Hi, I want to know the data augmentation in the feeder has not improved? Does the length of the input have a big influence? Also, have you trained the model on the 120 dataset? How's the accuracy?

    opened by VSunN 7
  • problem with gen_bone_data.py

    problem with gen_bone_data.py

    你好,请问一下我跑gen_bone_data.py时报错,好像是矩阵的维度有问题,该怎么解决,谢谢 [email protected]:~/2s-AGCN-master/data_gen$ python gen_bone_data.py ntu/xsub train 4%|█▋ | 1/25 [06:49<2:43:40, 409.20s/it]Traceback (most recent call last): File "gen_bone_data.py", line 50, in fp_sp[:, :, :, v1, :] = data[:, :, :, v1, :] - data[:, :, :, v2, :] IndexError: index 20 is out of bounds for axis 3 with size 18 4%|█▋ | 1/25 [06:49<2:43:45, 409.41s/it]

    opened by JaxferZ 5
  • Accuracy of aagcn

    Accuracy of aagcn

    I ran your implemented code using J-AAGCN and NTU-RGBD CV dataset. But Accuracy is 94.64, not 95.1 in your paper. What is the difference? The batch size was 32, not 64 because of the resource limit. Are there any other things to be aware of? I use your implemented code.

    opened by ilikeokoge 4
  • 用released model做test的时候提示 Unexpected key(s) in state_dict:

    用released model做test的时候提示 Unexpected key(s) in state_dict:

    python main.py --config ./config/nturgbd-cross-view/test_joint.yaml 这段代码能得到论文的结果。 但是到了这段 python main.py --config ./config/nturgbd-cross-view/test_bone.yaml``,会提示RuntimeError: Error(s) in loading state_dict for Model:`

    Unexpected key(s) in state_dict: "l1.gcn1.conv_res.0.weight", "l1.gcn1.conv_res.0.bias", "l1.gcn1.conv_res.1.weigh t", "l1.gcn1.conv_res.1.bias", "l1.gcn1.conv_res.1.running_mean", "l1.gcn1.conv_res.1.running_var", "l5.gcn1.conv_res.0.we ight", "l5.gcn1.conv_res.0.bias", "l5.gcn1.conv_res.1.weight", "l5.gcn1.conv_res.1.bias", "l5.gcn1.conv_res.1.running_mean ", "l5.gcn1.conv_res.1.running_var", "l8.gcn1.conv_res.0.weight", "l8.gcn1.conv_res.0.bias", "l8.gcn1.conv_res.1.weight", "l8.gcn1.conv_res.1.bias", "l8.gcn1.conv_res.1.running_mean", "l8.gcn1.conv_res.1.running_var".

    看起来是这个pretrained模型与提供的代码不匹配,我怎么做才能得到结果呢! 期待回复!

    opened by tailin1009 3
  • dataload error

    dataload error

    thank your source code, but when I run this code, The following error occurs: ValueError: num_samples should be a positive integer value, but got num_samples=0

    I've run the program 'python data_gen/ntu_gendata.py 'before, and some documents were generated : train_data_joint.npy train_label.pkl val_data_joint.npy val_label.pkl

    but their size are all 1K

    How should I deal with, trouble you give directions.

    thanks

    opened by xuanshibin 3
  • RuntimeError: running_mean should contain 126 elements not 63 (example).

    RuntimeError: running_mean should contain 126 elements not 63 (example).

    What is your elements for number of joints (18)? When I run your code, I got this error " RuntimeError: running_mean should contain 126 elements not 63". 63 means I change number of node. How to adjust these elements and how to get your elements 126 for your experiment?

    opened by JasOlean 3
  • what is (N, C, T, V, M) in agcn.py?

    what is (N, C, T, V, M) in agcn.py?

    thank you for sharing code and information :) I have some question about agcn.py code

    1. what is (N, C, T, V, M) in agcn.py? i guess T is 300 frame, V is the similarity between nodes, M is number of men in one video, but i am not sure that it is right

    2. are bone train code and joint train(agcn.py) code same? if it is not, is bone train code aagcn.py?

    opened by lodado 2
  • No module named 'data_gen'  and  No such file or directory: '../data/kinetics_raw/kinetics_val'

    No module named 'data_gen' and No such file or directory: '../data/kinetics_raw/kinetics_val'

    When I run "python data_gen/ntu_gendata.py", gets the error : ModuleNotFoundError: No module named 'data_gen'.

    When I run "python data_gen/kinetics_gendata.py", gets the error : FileNotFoundError: [Errno 2] No such file or directory: '../data/kinetics_raw/kinetics_val'.

    My raw data has put in the ./data.

    Needs your help!

    opened by XiongXintyw 2
  • 关于MS-AAGCN的运行问题

    关于MS-AAGCN的运行问题

    大佬您好!我十分有幸拜读了您的文章《Skeleton-Based Action Recognition with Multi-Stream Adaptive Graph Convolutional Networks》,受益匪浅!我已经跑通了2S-AGCN的代码,想和您请教一下MS-AAGCN的代码该如何运行呢?

    opened by 15762260991 1
  • 注意力模块中参数A的定义

    注意力模块中参数A的定义

    在复现代码时 找不到关于图卷积层中参数A的定义 请问这个A指的是什么呢: class TCN_GCN_unit(nn.Module): def init(self, in_channels, out_channels, A, stride=1, residual=True, adaptive=True, attention=True):

    opened by wangxx0101 1
  • 关于自适应时,tanh和softmax函数的问题

    关于自适应时,tanh和softmax函数的问题

    大佬您好,有两个问题想请教一下。 ①tanh激活函数,它将返回一个范围在[- 1,1]的值,softmax激活函数返回一个[0, 1]的值,当我们建模关节之间的相关性时,如果使用tanh返回为负值的时候,是说明这两个关节负相关吗? ②为什么tanh的效果会比softmax好一点,这个我不是太懂,您可以详细的讲解一下吗?

    opened by blue-q 0
  • Where is the code for visualization in Figure 8 and 9?

    Where is the code for visualization in Figure 8 and 9?

    Dear Authors,

    I have already read your "Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition". In that paper, you showed some experimental results in Figure 8 and 9. I would like to know which part of the code for that. Or, how to use layers to show these result's visualization? If you answer my question, I will really appreciate you. Thank you.

    opened by JasOlean 3
Releases(v0.0)
Owner
LShi
Video Analysis, Action Recognition.
LShi
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022