A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Overview

Compact Bilinear Pooling for PyTorch.

This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

This version relies on the FFT implementation provided with PyTorch 0.4.0 onward. For older versions of PyTorch, use the tag v0.3.0.

Installation

Run the setup.py, for instance:

python setup.py install

Usage

class compact_bilinear_pooling.CompactBilinearPooling(input1_size, input2_size, output_size, h1 = None, s1 = None, h2 = None, s2 = None)

Basic usage:

from compact_bilinear_pooling import CountSketch, CompactBilinearPooling

input_size = 2048
output_size = 16000
mcb = CompactBilinearPooling(input_size, input_size, output_size).cuda()
x = torch.rand(4,input_size).cuda()
y = torch.rand(4,input_size).cuda()

z = mcb(x,y)

Test

A couple of test of the implementation of Compact Bilinear Pooling and its gradient can be run using:

python test.py

References

Comments
  • The value in ComplexMultiply_backward function

    The value in ComplexMultiply_backward function

    Hi @gdlg, thanks for this nice work. I'm confused about the backward procedure of complex multiplication. So I hope you can help me to figure it out.

    In forward,

    Z = XY = (Rx + i * Ix)(Ry + i * Iy) = (RxRy - IxIy) + i * (IxRy + RxIy) = Rz + i * Iz
    

    In backward, according the chain rule, it will has

    grad_(L/X) = grad_(L/Z) * grad(Z/X)
               = grad_Z * Y
               = (R_gz + i * I_gz)(Ry + i * Iy)
               = (R_gzRy - I_gzIy) + i * (I_gzRy + R_gzIy)
    

    So, why is this line implemented by using the value = 1 for real part and value = -1 for image part?

    Is there something wrong in my thoughts? Thanks.

    opened by KaiyuYue 8
  • The miss of Rfft

    The miss of Rfft

    When I run the test module, it indicates that the module of pytorch_fft of fft in autograd does not have attribute of Rfft. What version of pytorch_fft should I install to fit this code?

    opened by PeiqinZhuang 8
  • Save the model - TypeError: can't pickle Rfft objects

    Save the model - TypeError: can't pickle Rfft objects

    How do you save and load the model, I'm using torch.save, which cause the following error:

    File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in save
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 117, in _with_file_like
       return body(f)
     File "xanaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in <lambda>
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 198, in _save
       pickler.dump(obj)
    TypeError: can't pickle Rfft objects
    
    
    opened by idansc 3
  • Multi GPU support

    Multi GPU support

    I modify

    class CompactBilinearPooling(nn.Module):   
         def forward(self, x, y):    
                return CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)
    

    to

    def forward(self, x):    
        x = x.permute(0, 2, 3, 1) #NCHW to NHWC   
        y = Variable(x.data.clone())    
        out = (CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)).permute(0,3,1,2) #to NCHW    
        out = nn.functional.adaptive_avg_pool2d(out, 1) # N,C,1,1   
        #add an element-wise signed square root layer and an instance-wise l2 normalization    
        out = (torch.sqrt(nn.functional.relu(out)) - torch.sqrt(nn.functional.relu(-out)))/torch.norm(out,2,1,True)   
        return out 
    

    This makes the compact pooling layer can be plugged to PyTorch CNNs more easily:

    model.avgpool = CompactBilinearPooling(input_C, input_C, bilinear['dim'])
    model.fc = nn.Linear(int(model.fc.in_features/input_C*bilinear['dim']), num_classes)

    However, when I run this using multiple GPUs, I got the following error:

    Traceback (most recent call last): File "train3_bilinear_pooling.py", line 400, in run() File "train3_bilinear_pooling.py", line 219, in run train(train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 326, in train return _each_epoch('train', train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 270, in _each_epoch output = model(input_var) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 319, in call result = self.forward(*input, **kwargs) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 67, in forward replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 72, in replicate return replicate(module, device_ids) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 19, in replicate buffer_copies = comm.broadcast_coalesced(buffers, devices) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/cuda/comm.py", line 55, in broadcast_coalesced for chunk in _take_tensors(tensors, buffer_size): File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/_utils.py", line 232, in _take_tensors if tensor.is_sparse: File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/autograd/variable.py", line 68, in getattr return object.getattribute(self, name) AttributeError: 'Variable' object has no attribute 'is_sparse'

    Do you have any ideas?

    opened by YanWang2014 3
  • AssertionError: False is not true

    AssertionError: False is not true

    Hi, I am back again. When running the test.py, I got the following error File "test.py", line 69, in test_gradients self.assertTrue(torch.autograd.gradcheck(cbp, (x,y), eps=1)) AssertionError: False is not true

    What does this mean?

    opened by YanWang2014 2
  • Support for Pytorch 1.11?

    Support for Pytorch 1.11?

    Hi, torch.fft() and torch.irfft() are no more functions, those are modules. And there appears to be a lof of modification in the parameters. I am currently trying to combine the two types of features with compact bilinear pooling, do you know how to port this code to pytorch 1.11?

    opened by bhosalems 1
  • Training does not converge after joining compact bilinear layer

    Training does not converge after joining compact bilinear layer

    Source code: x = self.features(x) #[4,512,28,28] batch_size = x.size(0) x = (torch.bmm(x, torch.transpose(x, 1, 2)) / 28 ** 2).view(batch_size, -1) x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x my code: x = self.features(x) #[4,512,28,28] x = x.view(x.shape[0], x.shape[1], -1) #[4,512,784] x = x.permute(0, 2, 1) #[4,784,512] x = self.mcb(x,x) #[4,784,512] batch_size = x.size(0) x = x.sum(1) #对于二维来说,dim=0,对列求和;dim=1对行求和;在这里是三维所以是对列求和 x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x

    The training does not converge after modification. Why? Is it a problem with my code?

    opened by roseif 3
Releases(v0.4.0)
Owner
Grégoire Payen de La Garanderie
Grégoire Payen de La Garanderie
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Matthias Fey 757 Jan 04, 2023
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021) Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofe

Zai Shi 36 Dec 21, 2022
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).

Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of

Karen Ullrich 190 Dec 30, 2022
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

878 Dec 30, 2022
A tiny package to compare two neural networks in PyTorch

Compare neural networks by their feature similarity

Anand Krishnamoorthy 180 Dec 30, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 02, 2023
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022