PyGCL: Graph Contrastive Learning Library for PyTorch

Overview

PyGCL: Graph Contrastive Learning for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.


Prerequisites

PyGCL needs the following packages to be installed beforehand:

  • Python 3.8+
  • PyTorch 1.7+
  • PyTorch-Geometric 1.7
  • DGL 0.5+
  • Scikit-learn 0.24+

Getting Started

Take a look at various examples located at the root directory. For example, try the following command to train a simple GCN for node classification on the WikiCS dataset using the local-local contrasting mode:

python train_node_l2l.py --dataset WikiCS --param_path params/GRACE/[email protected] --base_model GCNConv

For detailed parameter settings, please refer to [email protected]. These examples are mainly for reproducing experiments in our benchmarking study. You can find more details regarding general practices of graph contrastive learning in the paper.

Usage

Package Overview

Our PyGCL implements four main components of graph contrastive learning algorithms:

  • graph augmentation: transforms input graphs into congruent graph views.
  • contrasting modes: specifies positive and negative pairs.
  • contrastive objectives: computes the likelihood score for positive and negative pairs.
  • negative mining strategies: improves the negative sample set by considering the relative similarity (the hardness) of negative sample.

We also implement utilities for loading datasets, training models, and running experiments.

Building Your Own GCL Algorithms

Besides try the above examples for node and graph classification tasks, you can also build your own graph contrastive learning algorithms straightforwardly.

Graph Augmentation

In GCL.augmentors, PyGCL provides the Augmentor base class, which offers a universal interface for graph augmentation functions. Specifically, PyGCL implements the following augmentation functions:

Augmentation Class name
Edge Adding (EA) EdgeAdding
Edge Removing (ER) EdgeRemoving
Feature Masking (FM) FeatureMasking
Feature Dropout (FD) FeatureDropout
Personalized PageRank (PPR) PPRDiffusion
Markov Diffusion Kernel (MDK) MarkovDiffusion
Node Dropping (ND) NodeDropping
Subgraphs induced by Random Walks (RWS) RWSampling
Ego-net Sampling (ES) Identity

Call these augmentation functions by feeding with a graph of in a tuple form of node features, edge index, and edge features x, edge_index, edge_weightswill produce corresponding augmented graphs.

PyGCL also supports composing arbitrary number of augmentations together. To compose a list of augmentation instances augmentors, you only need to use the right shift operator >>:

aug = augmentors[0]
for a in augs[1:]:
    aug = aug >> a

You can also write your own augmentation functions by defining the augment function.

Contrasting Modes

PyGCL implements three contrasting modes: (a) local-local, (b) global-local, and (c) global-global modes. You can refer to the models folder for details. Note that the bootstrapping latent loss involves some special model design (asymmetric online/offline encoders and momentum weight updates) and thus we implement contrasting modes involving this contrastive objective in a separate BGRL model.

Contrastive Objectives

In GCL.losses, PyGCL implements the following contrastive objectives:

Contrastive objectives Class name
InfoNCE loss InfoNCELoss
Jensen-Shannon Divergence (JSD) loss JSDLoss
Triplet Margin (TM) loss TripletLoss
Bootstrapping Latent (BL) loss BootstrapLoss
Barlow Twins (BT) loss BTLoss
VICReg loss VICRegLoss

All these objectives are for contrasting positive and negative pairs at the same scale (i.e. local-local and global-global modes). For global-local modes, we offer G2L variants except for Barlow Twins and VICReg losses. Moreover, for InfoNCE, JSD, and Triplet losses, we further provide G2LEN variants, primarily for node-level tasks, which involve explicit construction of negative samples. You can find their examples in the root folder.

Negative Mining Strategies

In GCL.losses, PyGCL further implements four negative mining strategies that are build upon the InfoNCE contrastive objective:

Hard negative mining strategies Class name
Hard negative mixing HardMixingLoss
Conditional negative sampling RingLoss
Debiased contrastive objective InfoNCELoss(debiased_nt_xent_loss)
Hardness-biased negative sampling InfoNCELoss(hardness_nt_xent_loss)

Utilities

PyGCL provides various utilities for data loading, model training, and experiment execution.

In GCL.util you can use the following utilities:

  • split_dataset: splits the dataset into train/test/validation sets according to public or random splits. Currently, four split modes are supported: [rand, ogb, wikics, preload] .
  • seed_everything: manually sets the seed to numpy and PyTorch environments to ensure better reproducebility.
  • SimpleParam: provides a simple parameter configuration class to manage parameters from microsoft-nni, JSON, and YAML files.

We also implement two downstream classifiersLR_classification and SVM_classification in GCL.eval based on PyTorch and Scikit-learn respectively.

Moreover, based on PyTorch Geometric, we provide functions for loading common node and graph datasets. You can useload_node_dataset and load_graph_dataset in utils.py.

Owner
GCL: Graph Contrastive Learning Library for PyTorch
GCL: Graph Contrastive Learning Library for PyTorch
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).

Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of

Karen Ullrich 190 Dec 30, 2022
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Matthias Fey 757 Jan 04, 2023
High-level batteries-included neural network training library for Pytorch

Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st

382 Dec 06, 2022
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 03, 2023
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022