Unsupervised Language Model Pre-training for French

Overview

FlauBERT and FLUE

FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. This repository shares everything: pre-trained models (base and large), the data, the code to use the models and the code to train them if you need.

Along with FlauBERT comes FLUE: an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language.

This repository is still under construction and everything will be available soon.

Table of Contents

1. FlauBERT models
2. Using FlauBERT
    2.1. Using FlauBERT with Hugging Face's Transformers
    2.2. Using FlauBERT with Facebook XLM's library
3. Pre-training FlauBERT
    3.1. Data
    3.2. Training
    3.3. Convert an XLM pre-trained model to Hugging Face's Transformers
4. Fine-tuning FlauBERT on the FLUE benchmark
5. Citation

1. FlauBERT models

FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We have released the pretrained weights for the following model sizes.

The pretrained models are available for download from here or via Hugging Face's library.

Model name Number of layers Attention Heads Embedding Dimension Total Parameters
flaubert-small-cased 6 8 512 54 M
flaubert-base-uncased 12 12 768 137 M
flaubert-base-cased 12 12 768 138 M
flaubert-large-cased 24 16 1024 373 M

Note: flaubert-small-cased is partially trained so performance is not guaranteed. Consider using it for debugging purpose only.

We also provide the checkpoints from here for model base (cased/uncased) and large (cased).

2. Using FlauBERT

In this section, we describe two ways to obtain sentence embeddings from pretrained FlauBERT models: either via Hugging Face's Transformer library or via Facebook's XLM library. We will intergrate FlauBERT into Facebook' fairseq in the near future.

2.1. Using FlauBERT with Hugging Face's Transformers

You can use FlauBERT with Hugging Face's Transformers library as follow.

import torch
from transformers import FlaubertModel, FlaubertTokenizer

# Choose among ['flaubert/flaubert_small_cased', 'flaubert/flaubert_base_uncased', 
#               'flaubert/flaubert_base_cased', 'flaubert/flaubert_large_cased']
modelname = 'flaubert/flaubert_base_cased' 

# Load pretrained model and tokenizer
flaubert, log = FlaubertModel.from_pretrained(modelname, output_loading_info=True)
flaubert_tokenizer = FlaubertTokenizer.from_pretrained(modelname, do_lowercase=False)
# do_lowercase=False if using cased models, True if using uncased ones

sentence = "Le chat mange une pomme."
token_ids = torch.tensor([flaubert_tokenizer.encode(sentence)])

last_layer = flaubert(token_ids)[0]
print(last_layer.shape)
# torch.Size([1, 8, 768])  -> (batch size x number of tokens x embedding dimension)

# The BERT [CLS] token correspond to the first hidden state of the last layer
cls_embedding = last_layer[:, 0, :]

Notes: if your transformers version is <=2.10.0, modelname should take one of the following values:

['flaubert-small-cased', 'flaubert-base-uncased', 'flaubert-base-cased', 'flaubert-large-cased']

2.2. Using FlauBERT with Facebook XLM's library

The pretrained FlauBERT models are available for download from here. Each compressed folder includes 3 files:

  • *.pth: FlauBERT's pretrained model.
  • codes: BPE codes learned on the training data.
  • vocab: BPE vocabulary file.

Note: The following example only works for the modified XLM provided in this repo, it won't work for the original XLM. The code is taken from this tutorial.

import sys
import torch
import fastBPE

# Add Flaubert root to system path (change accordingly)
FLAUBERT_ROOT = '/home/user/Flaubert'
sys.path.append(FLAUBERT_ROOT)

from xlm.model.embedder import SentenceEmbedder
from xlm.data.dictionary import PAD_WORD


# Paths to model files
model_path = '/home/user/flaubert_base_cased/flaubert_base_cased_xlm.pth'
codes_path = '/home/user/flaubert_base_cased/codes'
vocab_path = '/home/user/flaubert_base_cased/vocab'
do_lowercase = False # Change this to True if you use uncased FlauBERT

bpe = fastBPE.fastBPE(codes_path, vocab_path)

sentences = "Le chat mange une pomme ."
if do_lowercase:
    sentences = sentences.lower()

# Apply BPE
sentences = bpe.apply([sentences])
sentences = [(('</s> %s </s>' % sent.strip()).split()) for sent in sentences]
print(sentences)

# Create batch
bs = len(sentences)
slen = max([len(sent) for sent in sentences])

# Reload pretrained model
embedder = SentenceEmbedder.reload(model_path)
embedder.eval()
dico = embedder.dico

# Prepare inputs to model
word_ids = torch.LongTensor(slen, bs).fill_(dico.index(PAD_WORD))
for i in range(len(sentences)):
    sent = torch.LongTensor([dico.index(w) for w in sentences[i]])
    word_ids[:len(sent), i] = sent
lengths = torch.LongTensor([len(sent) for sent in sentences])

# Get sentence embeddings (corresponding to the BERT [CLS] token)
cls_embedding = embedder.get_embeddings(x=word_ids, lengths=lengths)
print(cls_embedding.size())

# Get the entire output tensor for all tokens
# Note that cls_embedding = tensor[0]
tensor = embedder.get_embeddings(x=word_ids, lengths=lengths, all_tokens=True)
print(tensor.size())

3. Pre-training FlauBERT

Install dependencies

You should clone this repo and then install WikiExtractor, fastBPE and Moses tokenizer under tools:

git clone https://github.com/getalp/Flaubert.git
cd Flaubert

# Install toolkit
cd tools
git clone https://github.com/attardi/wikiextractor.git
git clone https://github.com/moses-smt/mosesdecoder.git

git clone https://github.com/glample/fastBPE.git
cd fastBPE
g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast

3.1. Data

In this section, we describe the pipeline to prepare the data for training FlauBERT. This is based on Facebook XLM's library. The steps are as follows:

  1. Download, clean, and tokenize data using Moses tokenizer.
  2. Split cleaned data into: train, validation, and test sets.
  3. Learn BPE on the training set. Then apply learned BPE codes to train, validation, and test sets.
  4. Binarize data.

(1) Download and Preprocess Data

In the following, replace $DATA_DIR, $corpus_name respectively with the path to the local directory to save the downloaded data and the name of the corpus that you want to download among the options specified in the scripts.

To download and preprocess the data, excecute the following commands:

./download.sh $DATA_DIR $corpus_name fr
./preprocess.sh $DATA_DIR $corpus_name fr

For example:

./download.sh ~/data gutenberg fr
./preprocess.sh ~/data gutenberg fr

The first command will download the raw data to $DATA_DIR/raw/fr_gutenberg, the second one processes them and save to $DATA_DIR/processed/fr_gutenberg.

(2) Split Data

Run the following command to split cleaned corpus into train, validation, and test sets. You can modify the train/validation/test ratio in the script.

bash tools/split_train_val_test.sh $DATA_PATH

where $DATA_PATH is path to the file to be split.

The output files are: fr.train, fr.valid, fr.test which are saved under the same directory as the original file.

(3) & (4) Learn BPE and Prepare Data

Run the following command to learn BPE codes on the training set, and apply BPE codes on the train, validation, and test sets. The data is then binarized and ready for training.

bash tools/create_pretraining_data.sh $DATA_DIR $BPE_size

where $DATA_DIR is path to the directory where the 3 above files fr.train, fr.valid, fr.test are saved. $BPE_size is the number of BPE vocabulary size, for example: 30 for 30k,50 for 50k, etc. The output files are saved in $DATA_DIR/BPE/30k or $DATA_DIR/BPE/50k correspondingly.

3.2. Training

Our codebase for pretraining FlauBERT is largely based on the XLM repo, with some modifications. You can use their code to train FlauBERT, it will work just fine.

Execute the following command to train FlauBERT (base) on your preprocessed data:

python train.py \
    --exp_name flaubert_base_cased \
    --dump_path $dump_path \
    --data_path $data_path \
    --amp 1 \
    --lgs 'fr' \
    --clm_steps '' \
    --mlm_steps 'fr' \
    --emb_dim 768 \
    --n_layers 12 \
    --n_heads 12 \
    --dropout 0.1 \
    --attention_dropout 0.1 \
    --gelu_activation true \
    --batch_size 16 \
    --bptt 512 \
    --optimizer "adam_inverse_sqrt,lr=0.0006,warmup_updates=24000,beta1=0.9,beta2=0.98,weight_decay=0.01,eps=0.000001" \
    --epoch_size 300000 \
    --max_epoch 100000 \
    --validation_metrics _valid_fr_mlm_ppl \
    --stopping_criterion _valid_fr_mlm_ppl,20 \
    --fp16 true \
    --accumulate_gradients 16 \
    --word_mask_keep_rand '0.8,0.1,0.1' \
    --word_pred '0.15'                      

where $dump_path is the path to where you want to save your pretrained model, $data_path is the path to the binarized data sets, for example $DATA_DIR/BPE/50k.

Run experiments on multiple GPUs and/or multiple nodes

To run experiments on multiple GPUs in a single machine, you can use the following command (the parameters after train.py are the same as above).

export NGPU=4
export CUDA_VISIBLE_DEVICES=0,1,2,3,4 # if you only use some of the GPUs in the machine
python -m torch.distributed.launch --nproc_per_node=$NGPU train.py

To run experiments on multiple nodes, multiple GPUs in clusters using SLURM as a resource manager, you can use the following command to launch training after requesting resources with #SBATCH (the parameters after train.py are the same as above plus --master_port parameter).

srun python train.py

3.3. Convert an XLM pre-trained model to Hugging Face's Transformers

To convert an XLM pre-trained model to Hugging Face's Transformers, you can use the following command.

python tools/use_flaubert_with_transformers/convert_to_transformers.py --inputdir $inputdir --outputdir $outputdir

where $inputdir is path to the XLM pretrained model directory, $outputdir is path to the output directory where you want to save the Hugging Face's Transformer model.

4. Fine-tuning FlauBERT on the FLUE benchmark

FLUE (French Language Understanding Evaludation) is a general benchmark for evaluating French NLP systems. Please refer to this page for an example of fine-tuning FlauBERT on this benchmark.

5. Video presentation

You can watch this 7mn video presentation of FlauBERT [VIDEO 7mn] (https://www.youtube.com/watch?v=NgLM9GuwSwc)

6. Citation

If you use FlauBERT or the FLUE Benchmark for your scientific publication, or if you find the resources in this repository useful, please cite one of the following papers:

LREC paper

@InProceedings{le2020flaubert,
  author    = {Le, Hang  and  Vial, Lo\"{i}c  and  Frej, Jibril  and  Segonne, Vincent  and  Coavoux, Maximin  and  Lecouteux, Benjamin  and  Allauzen, Alexandre  and  Crabb\'{e}, Beno\^{i}t  and  Besacier, Laurent  and  Schwab, Didier},
  title     = {FlauBERT: Unsupervised Language Model Pre-training for French},
  booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
  month     = {May},
  year      = {2020},
  address   = {Marseille, France},
  publisher = {European Language Resources Association},
  pages     = {2479--2490},
  url       = {https://www.aclweb.org/anthology/2020.lrec-1.302}
}

TALN paper

@inproceedings{le2020flaubert,
  title         = {FlauBERT: des mod{\`e}les de langue contextualis{\'e}s pr{\'e}-entra{\^\i}n{\'e}s pour le fran{\c{c}}ais},
  author        = {Le, Hang and Vial, Lo{\"\i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb{\'e}, Beno{\^\i}t and Besacier, Laurent and Schwab, Didier},
  booktitle     = {Actes de la 6e conf{\'e}rence conjointe Journ{\'e}es d'{\'E}tudes sur la Parole (JEP, 31e {\'e}dition), Traitement Automatique des Langues Naturelles (TALN, 27e {\'e}dition), Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (R{\'E}CITAL, 22e {\'e}dition). Volume 2: Traitement Automatique des Langues Naturelles},
  pages         = {268--278},
  year          = {2020},
  organization  = {ATALA}
}
Owner
GETALP
Study Group for Machine Translation and Automated Processing of Languages and Speech
GETALP
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Malware-Related Sentence Classification

Malware-Related Sentence Classification This repo contains the code for the ICTAI 2021 paper "Enrichment of Features for Malware-Related Sentence Clas

Chau Nguyen 1 Mar 26, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022