PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

Related tags

Deep LearningMemSeg
Overview

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments

Introduction

This repository is a PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments. This work is based on semseg.

The codebase mainly uses ResNet18, ResNet50 and MobileNet-V2 as backbone with ASPP module and can be easily adapted to other basic semantic segmentation structures.

Sample experimented dataset is RUGD.

Requirement

Hardware: >= 11G GPU memory

Software: PyTorch>=1.0.0, python3

Usage

For installation, follow installation steps below or recommend you to refer to the instructions described here.

For its pretrained ResNet50 backbone model, you can download from URL.

Getting Started

Installation

  1. Clone this repository.
git clone https://github.com/youngsjjn/MemSeg.git
  1. Install Python dependencies.
pip install -r requirements.txt

Implementation

  1. Download datasets (i.e. RUGD) and change the root of data path in config.

Download data list of RUGD here.

  1. Inference If you want to inference on pretrained models, download pretrained network in my drive and save them in ./exp/rugd/.

Inference "ResNet50 + Deeplabv3" without the memory module

sh tool/test.sh rugd deeplab50

Inference "ResNet50 + Deeplabv3" with the memory module

sh tool/test_mem.sh rugd deeplab50mem
Network mIoU
ResNet18 + PSPNet 33.42
ResNet18 + PSPNet (Memory) 34.13
ResNet18 + Deeplabv3 33.48
ResNet18 + Deeplabv3 (Memory) 35.07
ResNet50 + Deeplabv3 36.77
ResNet50 + Deeplabv3 (Memory) 37.71
  1. Train (Evaluation is included at the end of the training) Train "ResNet50 + Deeplabv3" without the memory module
sh tool/train.sh rugd deeplab50

Train "ResNet50 + Deeplabv3" without the memory module

sh tool/train_mem.sh rugd deeplab50mem

Here, the example is for training or testing on "ResNet50 + Deeplabv3". If you want to train other networks, please change "deeplab50" or "deeplab50mem" as a postfix of a config file name.

For example, train "ResNet18 + PSPNet" with the memory module:

sh tool/train_mem.sh rugd pspnet18mem

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{DBLP:journals/corr/abs-2108-05635,
  author    = {Youngsaeng Jin and
               David K. Han and
               Hanseok Ko},
  title     = {Memory-based Semantic Segmentation for Off-road Unstructured Natural
               Environments},
  journal   = {CoRR},
  volume    = {abs/2108.05635},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.05635},
  eprinttype = {arXiv},
  eprint    = {2108.05635},
  timestamp = {Wed, 18 Aug 2021 19:45:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-05635.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022