code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Related tags

Deep LearningLRR
Overview

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation

This repository contains code and models for the method described in:

Golnaz Ghiasi, Charless C. Fowlkes, "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation", ECCV 2016

The code is written in Matlab, it uses Matconvnet library and is based on the following repository:


This code is tested on Linux using matconvnet v1.0-beta20 and cuDNN 5

Testing pre-trained models

Download pre-trained models and extract it into models directory.

Testing pre-trained model on PASCAL VOC validation data

Specify matconvnet path in "LRRTestOnPascal.m" and execute it.

Testing pre-trained model on Cityscape validation data

Download "gtFine_trainvaltest.zip" and "leftImg8bit_trainvaltest.zip" from Cityscapes dataset website, unzip them. Specify their path ("opts.dataDir") and matconvnet path ("path_to_matconvnet") in "LRRTestOnCityScape.m" and execute it.

Training LRR on PASCAL VOC training data

Specify matconvnet path in "LRR4xTrainVGG16Pascal.m" and execute it.

Issues, Questions, etc

Please contact "gghiasi @ ics.uci.edu"


Copyright (C) 2016 Golnaz Ghiasi, Charless C. Fowlkes

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
πŸš— INGI Dakar 2K21 - Be the first one on the finish line ! πŸš—

πŸš— INGI Dakar 2K21 - Be the first one on the finish line ! πŸš— This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch μ•ˆλ…•ν•˜μ„Έμš”. μ €λŠ” TUNiBμ—μ„œ λ¨Έμ‹ λŸ¬λ‹ μ—”μ§€λ‹ˆμ–΄λ‘œ 근무 쀑인 κ³ ν˜„μ›…μž…λ‹ˆλ‹€. 이 μžλ£ŒλŠ” λŒ€κ·œλͺ¨ μ–Έμ–΄λͺ¨λΈ κ°œλ°œμ— ν•„μš”ν•œ μ—¬λŸ¬κ°€μ§€ κΈ°μˆ λ“€μ„ μ†Œκ°œλ“œλ¦¬κΈ° μœ„ν•΄ λ§ˆλ ¨ν•˜μ˜€μœΌλ©° 기본적으둜

TUNiB 172 Dec 29, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

ηŽ‹ηš“ζ³’ 147 Jan 07, 2023
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in πŸ‡°πŸ‡· Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022