Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Overview

Contrastive Unpaired Translation (CUT)

video (1m) | video (10m) | website | paper





We provide our PyTorch implementation of unpaired image-to-image translation based on patchwise contrastive learning and adversarial learning. No hand-crafted loss and inverse network is used. Compared to CycleGAN, our model training is faster and less memory-intensive. In addition, our method can be extended to single image training, where each “domain” is only a single image.

Contrastive Learning for Unpaired Image-to-Image Translation
Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu
UC Berkeley and Adobe Research
In ECCV 2020




Pseudo code

import torch
cross_entropy_loss = torch.nn.CrossEntropyLoss()

# Input: f_q (BxCxS) and sampled features from H(G_enc(x))
# Input: f_k (BxCxS) are sampled features from H(G_enc(G(x))
# Input: tau is the temperature used in PatchNCE loss.
# Output: PatchNCE loss
def PatchNCELoss(f_q, f_k, tau=0.07):
    # batch size, channel size, and number of sample locations
    B, C, S = f_q.shape

    # calculate v * v+: BxSx1
    l_pos = (f_k * f_q).sum(dim=1)[:, :, None]

    # calculate v * v-: BxSxS
    l_neg = torch.bmm(f_q.transpose(1, 2), f_k)

    # The diagonal entries are not negatives. Remove them.
    identity_matrix = torch.eye(S)[None, :, :]
    l_neg.masked_fill_(identity_matrix, -float('inf'))

    # calculate logits: (B)x(S)x(S+1)
    logits = torch.cat((l_pos, l_neg), dim=2) / tau

    # return PatchNCE loss
    predictions = logits.flatten(0, 1)
    targets = torch.zeros(B * S, dtype=torch.long)
    return cross_entropy_loss(predictions, targets)

Example Results

Unpaired Image-to-Image Translation

Single Image Unpaired Translation

Russian Blue Cat to Grumpy Cat

Parisian Street to Burano's painted houses

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Update log

9/12/2020: Added single-image translation.

Getting started

  • Clone this repo:
git clone https://github.com/taesungp/contrastive-unpaired-translation CUT
cd CUT
  • Install PyTorch 1.1 and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

CUT and FastCUT Training and Test

  • Download the grumpifycat dataset (Fig 8 of the paper. Russian Blue -> Grumpy Cats)
bash ./datasets/download_cut_dataset.sh grumpifycat

The dataset is downloaded and unzipped at ./datasets/grumpifycat/.

  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

  • Train the CUT model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_CUT --CUT_mode CUT

Or train the FastCUT model

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_FastCUT --CUT_mode FastCUT

The checkpoints will be stored at ./checkpoints/grumpycat_*/web.

  • Test the CUT model:
python test.py --dataroot ./datasets/grumpifycat --name grumpycat_CUT --CUT_mode CUT --phase train

The test results will be saved to a html file here: ./results/grumpifycat/latest_train/index.html.

CUT, FastCUT, and CycleGAN


CUT is trained with the identity preservation loss and with lambda_NCE=1, while FastCUT is trained without the identity loss but with higher lambda_NCE=10.0. Compared to CycleGAN, CUT learns to perform more powerful distribution matching, while FastCUT is designed as a lighter (half the GPU memory, can fit a larger image), and faster (twice faster to train) alternative to CycleGAN. Please refer to the paper for more details.

In the above figure, we measure the percentage of pixels belonging to the horse/zebra bodies, using a pre-trained semantic segmentation model. We find a distribution mismatch between sizes of horses and zebras images -- zebras usually appear larger (36.8% vs. 17.9%). Our full method CUT has the flexibility to enlarge the horses, as a means of better matching of the training statistics than CycleGAN. FastCUT behaves more conservatively like CycleGAN.

Training using our launcher scripts

Please see experiments/grumpifycat_launcher.py that generates the above command line arguments. The launcher scripts are useful for configuring rather complicated command-line arguments of training and testing.

Using the launcher, the command below generates the training command of CUT and FastCUT.

python -m experiments grumpifycat train 0   # CUT
python -m experiments grumpifycat train 1   # FastCUT

To test using the launcher,

python -m experiments grumpifycat test 0   # CUT
python -m experiments grumpifycat test 1   # FastCUT

Possible commands are run, run_test, launch, close, and so on. Please see experiments/__main__.py for all commands. Launcher is easy and quick to define and use. For example, the grumpifycat launcher is defined in a few lines:

Grumpy Cats dataset does not have test split. # Therefore, let's set the test split to be the "train" set. return ["python test.py " + str(opt.set(phase='train')) for opt in self.common_options()] ">
from .tmux_launcher import Options, TmuxLauncher


class Launcher(TmuxLauncher):
    def common_options(self):
        return [
            Options(    # Command 0
                dataroot="./datasets/grumpifycat",
                name="grumpifycat_CUT",
                CUT_mode="CUT"
            ),

            Options(    # Command 1
                dataroot="./datasets/grumpifycat",
                name="grumpifycat_FastCUT",
                CUT_mode="FastCUT",
            )
        ]

    def commands(self):
        return ["python train.py " + str(opt) for opt in self.common_options()]

    def test_commands(self):
        # Russian Blue -> Grumpy Cats dataset does not have test split.
        # Therefore, let's set the test split to be the "train" set.
        return ["python test.py " + str(opt.set(phase='train')) for opt in self.common_options()]

Apply a pre-trained CUT model and evaluate FID

To run the pretrained models, run the following.

# Download and unzip the pretrained models. The weights should be located at
# checkpoints/horse2zebra_cut_pretrained/latest_net_G.pth, for example.
wget http://efrosgans.eecs.berkeley.edu/CUT/pretrained_models.tar
tar -xf pretrained_models.tar

# Generate outputs. The dataset paths might need to be adjusted.
# To do this, modify the lines of experiments/pretrained_launcher.py
# [id] corresponds to the respective commands defined in pretrained_launcher.py
# 0 - CUT on Cityscapes
# 1 - FastCUT on Cityscapes
# 2 - CUT on Horse2Zebra
# 3 - FastCUT on Horse2Zebra
# 4 - CUT on Cat2Dog
# 5 - FastCUT on Cat2Dog
python -m experiments pretrained run_test [id]

# Evaluate FID. To do this, first install pytorch-fid of https://github.com/mseitzer/pytorch-fid
# pip install pytorch-fid
# For example, to evaluate horse2zebra FID of CUT,
# python -m pytorch_fid ./datasets/horse2zebra/testB/ results/horse2zebra_cut_pretrained/test_latest/images/fake_B/
# To evaluate Cityscapes FID of FastCUT,
# python -m pytorch_fid ./datasets/cityscapes/valA/ ~/projects/contrastive-unpaired-translation/results/cityscapes_fastcut_pretrained/test_latest/images/fake_B/
# Note that a special dataset needs to be used for the Cityscapes model. Please read below. 
python -m pytorch_fid [path to real test images] [path to generated images]

Note: the Cityscapes pretrained model was trained and evaluated on a resized and JPEG-compressed version of the original Cityscapes dataset. To perform evaluation, please download this validation set and perform evaluation.

SinCUT Single Image Unpaired Training

To train SinCUT (single-image translation, shown in Fig 9, 13 and 14 of the paper), you need to

  1. set the --model option as --model sincut, which invokes the configuration and codes at ./models/sincut_model.py, and
  2. specify the dataset directory of one image in each domain, such as the example dataset included in this repo at ./datasets/single_image_monet_etretat/.

For example, to train a model for the Etretat cliff (first image of Figure 13), please use the following command.

python train.py --model sincut --name singleimage_monet_etretat --dataroot ./datasets/single_image_monet_etretat

or by using the experiment launcher script,

python -m experiments singleimage run 0

For single-image translation, we adopt network architectural components of StyleGAN2, as well as the pixel identity preservation loss used in DTN and CycleGAN. In particular, we adopted the code of rosinality, which exists at models/stylegan_networks.py.

The training takes several hours. To generate the final image using the checkpoint,

python test.py --model sincut --name singleimage_monet_etretat --dataroot ./datasets/single_image_monet_etretat

or simply

python -m experiments singleimage run_test 0

Datasets

Download CUT/CycleGAN/pix2pix datasets. For example,

bash datasets/download_cut_datasets.sh horse2zebra

The Cat2Dog dataset is prepared from the AFHQ dataset. Please visit https://github.com/clovaai/stargan-v2 and download the AFHQ dataset by bash download.sh afhq-dataset of the github repo. Then reorganize directories as follows.

mkdir datasets/cat2dog
ln -s datasets/cat2dog/trainA [path_to_afhq]/train/cat
ln -s datasets/cat2dog/trainB [path_to_afhq]/train/dog
ln -s datasets/cat2dog/testA [path_to_afhq]/test/cat
ln -s datasets/cat2dog/testB [path_to_afhq]/test/dog

The Cityscapes dataset can be downloaded from https://cityscapes-dataset.com. After that, use the script ./datasets/prepare_cityscapes_dataset.py to prepare the dataset.

Preprocessing of input images

The preprocessing of the input images, such as resizing or random cropping, is controlled by the option --preprocess, --load_size, and --crop_size. The usage follows the CycleGAN/pix2pix repo.

For example, the default setting --preprocess resize_and_crop --load_size 286 --crop_size 256 resizes the input image to 286x286, and then makes a random crop of size 256x256 as a way to perform data augmentation. There are other preprocessing options that can be specified, and they are specified in base_dataset.py. Below are some example options.

  • --preprocess none: does not perform any preprocessing. Note that the image size is still scaled to be a closest multiple of 4, because the convolutional generator cannot maintain the same image size otherwise.
  • --preprocess scale_width --load_size 768: scales the width of the image to be of size 768.
  • --preprocess scale_shortside_and_crop: scales the image preserving aspect ratio so that the short side is load_size, and then performs random cropping of window size crop_size.

More preprocessing options can be added by modifying get_transform() of base_dataset.py.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{park2020cut,
  title={Contrastive Learning for Unpaired Image-to-Image Translation},
  author={Taesung Park and Alexei A. Efros and Richard Zhang and Jun-Yan Zhu},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

If you use the original pix2pix and CycleGAN model included in this repo, please cite the following papers

@inproceedings{CycleGAN2017,
  title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks},
  author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2017}
}


@inproceedings{isola2017image,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017}
}

Acknowledgments

We thank Allan Jabri and Phillip Isola for helpful discussion and feedback. Our code is developed based on pytorch-CycleGAN-and-pix2pix. We also thank pytorch-fid for FID computation, drn for mIoU computation, and stylegan2-pytorch for the PyTorch implementation of StyleGAN2 used in our single-image translation setting.

Owner
Research Scientist at Adobe https://taesung.me
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022