Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Overview

Contrastive Unpaired Translation (CUT)

video (1m) | video (10m) | website | paper





We provide our PyTorch implementation of unpaired image-to-image translation based on patchwise contrastive learning and adversarial learning. No hand-crafted loss and inverse network is used. Compared to CycleGAN, our model training is faster and less memory-intensive. In addition, our method can be extended to single image training, where each “domain” is only a single image.

Contrastive Learning for Unpaired Image-to-Image Translation
Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu
UC Berkeley and Adobe Research
In ECCV 2020




Pseudo code

import torch
cross_entropy_loss = torch.nn.CrossEntropyLoss()

# Input: f_q (BxCxS) and sampled features from H(G_enc(x))
# Input: f_k (BxCxS) are sampled features from H(G_enc(G(x))
# Input: tau is the temperature used in PatchNCE loss.
# Output: PatchNCE loss
def PatchNCELoss(f_q, f_k, tau=0.07):
    # batch size, channel size, and number of sample locations
    B, C, S = f_q.shape

    # calculate v * v+: BxSx1
    l_pos = (f_k * f_q).sum(dim=1)[:, :, None]

    # calculate v * v-: BxSxS
    l_neg = torch.bmm(f_q.transpose(1, 2), f_k)

    # The diagonal entries are not negatives. Remove them.
    identity_matrix = torch.eye(S)[None, :, :]
    l_neg.masked_fill_(identity_matrix, -float('inf'))

    # calculate logits: (B)x(S)x(S+1)
    logits = torch.cat((l_pos, l_neg), dim=2) / tau

    # return PatchNCE loss
    predictions = logits.flatten(0, 1)
    targets = torch.zeros(B * S, dtype=torch.long)
    return cross_entropy_loss(predictions, targets)

Example Results

Unpaired Image-to-Image Translation

Single Image Unpaired Translation

Russian Blue Cat to Grumpy Cat

Parisian Street to Burano's painted houses

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Update log

9/12/2020: Added single-image translation.

Getting started

  • Clone this repo:
git clone https://github.com/taesungp/contrastive-unpaired-translation CUT
cd CUT
  • Install PyTorch 1.1 and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

CUT and FastCUT Training and Test

  • Download the grumpifycat dataset (Fig 8 of the paper. Russian Blue -> Grumpy Cats)
bash ./datasets/download_cut_dataset.sh grumpifycat

The dataset is downloaded and unzipped at ./datasets/grumpifycat/.

  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

  • Train the CUT model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_CUT --CUT_mode CUT

Or train the FastCUT model

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_FastCUT --CUT_mode FastCUT

The checkpoints will be stored at ./checkpoints/grumpycat_*/web.

  • Test the CUT model:
python test.py --dataroot ./datasets/grumpifycat --name grumpycat_CUT --CUT_mode CUT --phase train

The test results will be saved to a html file here: ./results/grumpifycat/latest_train/index.html.

CUT, FastCUT, and CycleGAN


CUT is trained with the identity preservation loss and with lambda_NCE=1, while FastCUT is trained without the identity loss but with higher lambda_NCE=10.0. Compared to CycleGAN, CUT learns to perform more powerful distribution matching, while FastCUT is designed as a lighter (half the GPU memory, can fit a larger image), and faster (twice faster to train) alternative to CycleGAN. Please refer to the paper for more details.

In the above figure, we measure the percentage of pixels belonging to the horse/zebra bodies, using a pre-trained semantic segmentation model. We find a distribution mismatch between sizes of horses and zebras images -- zebras usually appear larger (36.8% vs. 17.9%). Our full method CUT has the flexibility to enlarge the horses, as a means of better matching of the training statistics than CycleGAN. FastCUT behaves more conservatively like CycleGAN.

Training using our launcher scripts

Please see experiments/grumpifycat_launcher.py that generates the above command line arguments. The launcher scripts are useful for configuring rather complicated command-line arguments of training and testing.

Using the launcher, the command below generates the training command of CUT and FastCUT.

python -m experiments grumpifycat train 0   # CUT
python -m experiments grumpifycat train 1   # FastCUT

To test using the launcher,

python -m experiments grumpifycat test 0   # CUT
python -m experiments grumpifycat test 1   # FastCUT

Possible commands are run, run_test, launch, close, and so on. Please see experiments/__main__.py for all commands. Launcher is easy and quick to define and use. For example, the grumpifycat launcher is defined in a few lines:

Grumpy Cats dataset does not have test split. # Therefore, let's set the test split to be the "train" set. return ["python test.py " + str(opt.set(phase='train')) for opt in self.common_options()] ">
from .tmux_launcher import Options, TmuxLauncher


class Launcher(TmuxLauncher):
    def common_options(self):
        return [
            Options(    # Command 0
                dataroot="./datasets/grumpifycat",
                name="grumpifycat_CUT",
                CUT_mode="CUT"
            ),

            Options(    # Command 1
                dataroot="./datasets/grumpifycat",
                name="grumpifycat_FastCUT",
                CUT_mode="FastCUT",
            )
        ]

    def commands(self):
        return ["python train.py " + str(opt) for opt in self.common_options()]

    def test_commands(self):
        # Russian Blue -> Grumpy Cats dataset does not have test split.
        # Therefore, let's set the test split to be the "train" set.
        return ["python test.py " + str(opt.set(phase='train')) for opt in self.common_options()]

Apply a pre-trained CUT model and evaluate FID

To run the pretrained models, run the following.

# Download and unzip the pretrained models. The weights should be located at
# checkpoints/horse2zebra_cut_pretrained/latest_net_G.pth, for example.
wget http://efrosgans.eecs.berkeley.edu/CUT/pretrained_models.tar
tar -xf pretrained_models.tar

# Generate outputs. The dataset paths might need to be adjusted.
# To do this, modify the lines of experiments/pretrained_launcher.py
# [id] corresponds to the respective commands defined in pretrained_launcher.py
# 0 - CUT on Cityscapes
# 1 - FastCUT on Cityscapes
# 2 - CUT on Horse2Zebra
# 3 - FastCUT on Horse2Zebra
# 4 - CUT on Cat2Dog
# 5 - FastCUT on Cat2Dog
python -m experiments pretrained run_test [id]

# Evaluate FID. To do this, first install pytorch-fid of https://github.com/mseitzer/pytorch-fid
# pip install pytorch-fid
# For example, to evaluate horse2zebra FID of CUT,
# python -m pytorch_fid ./datasets/horse2zebra/testB/ results/horse2zebra_cut_pretrained/test_latest/images/fake_B/
# To evaluate Cityscapes FID of FastCUT,
# python -m pytorch_fid ./datasets/cityscapes/valA/ ~/projects/contrastive-unpaired-translation/results/cityscapes_fastcut_pretrained/test_latest/images/fake_B/
# Note that a special dataset needs to be used for the Cityscapes model. Please read below. 
python -m pytorch_fid [path to real test images] [path to generated images]

Note: the Cityscapes pretrained model was trained and evaluated on a resized and JPEG-compressed version of the original Cityscapes dataset. To perform evaluation, please download this validation set and perform evaluation.

SinCUT Single Image Unpaired Training

To train SinCUT (single-image translation, shown in Fig 9, 13 and 14 of the paper), you need to

  1. set the --model option as --model sincut, which invokes the configuration and codes at ./models/sincut_model.py, and
  2. specify the dataset directory of one image in each domain, such as the example dataset included in this repo at ./datasets/single_image_monet_etretat/.

For example, to train a model for the Etretat cliff (first image of Figure 13), please use the following command.

python train.py --model sincut --name singleimage_monet_etretat --dataroot ./datasets/single_image_monet_etretat

or by using the experiment launcher script,

python -m experiments singleimage run 0

For single-image translation, we adopt network architectural components of StyleGAN2, as well as the pixel identity preservation loss used in DTN and CycleGAN. In particular, we adopted the code of rosinality, which exists at models/stylegan_networks.py.

The training takes several hours. To generate the final image using the checkpoint,

python test.py --model sincut --name singleimage_monet_etretat --dataroot ./datasets/single_image_monet_etretat

or simply

python -m experiments singleimage run_test 0

Datasets

Download CUT/CycleGAN/pix2pix datasets. For example,

bash datasets/download_cut_datasets.sh horse2zebra

The Cat2Dog dataset is prepared from the AFHQ dataset. Please visit https://github.com/clovaai/stargan-v2 and download the AFHQ dataset by bash download.sh afhq-dataset of the github repo. Then reorganize directories as follows.

mkdir datasets/cat2dog
ln -s datasets/cat2dog/trainA [path_to_afhq]/train/cat
ln -s datasets/cat2dog/trainB [path_to_afhq]/train/dog
ln -s datasets/cat2dog/testA [path_to_afhq]/test/cat
ln -s datasets/cat2dog/testB [path_to_afhq]/test/dog

The Cityscapes dataset can be downloaded from https://cityscapes-dataset.com. After that, use the script ./datasets/prepare_cityscapes_dataset.py to prepare the dataset.

Preprocessing of input images

The preprocessing of the input images, such as resizing or random cropping, is controlled by the option --preprocess, --load_size, and --crop_size. The usage follows the CycleGAN/pix2pix repo.

For example, the default setting --preprocess resize_and_crop --load_size 286 --crop_size 256 resizes the input image to 286x286, and then makes a random crop of size 256x256 as a way to perform data augmentation. There are other preprocessing options that can be specified, and they are specified in base_dataset.py. Below are some example options.

  • --preprocess none: does not perform any preprocessing. Note that the image size is still scaled to be a closest multiple of 4, because the convolutional generator cannot maintain the same image size otherwise.
  • --preprocess scale_width --load_size 768: scales the width of the image to be of size 768.
  • --preprocess scale_shortside_and_crop: scales the image preserving aspect ratio so that the short side is load_size, and then performs random cropping of window size crop_size.

More preprocessing options can be added by modifying get_transform() of base_dataset.py.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{park2020cut,
  title={Contrastive Learning for Unpaired Image-to-Image Translation},
  author={Taesung Park and Alexei A. Efros and Richard Zhang and Jun-Yan Zhu},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

If you use the original pix2pix and CycleGAN model included in this repo, please cite the following papers

@inproceedings{CycleGAN2017,
  title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks},
  author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2017}
}


@inproceedings{isola2017image,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017}
}

Acknowledgments

We thank Allan Jabri and Phillip Isola for helpful discussion and feedback. Our code is developed based on pytorch-CycleGAN-and-pix2pix. We also thank pytorch-fid for FID computation, drn for mIoU computation, and stylegan2-pytorch for the PyTorch implementation of StyleGAN2 used in our single-image translation setting.

Owner
Research Scientist at Adobe https://taesung.me
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022