Big Bird: Transformers for Longer Sequences

Overview

Big Bird: Transformers for Longer Sequences

Not an official Google product.

What is BigBird?

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.

As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization.

More details and comparisons can be found in our presentation.

Citation

If you find this useful, please cite our NeurIPS 2020 paper:

@article{zaheer2020bigbird,
  title={Big bird: Transformers for longer sequences},
  author={Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Code

The most important directory is core. There are three main files in core.

  • attention.py: Contains BigBird linear attention mechanism
  • encoder.py: Contains the main long sequence encoder stack
  • modeling.py: Contains packaged BERT and seq2seq transformer models with BigBird attention

Colab/IPython Notebook

A quick fine-tuning demonstration for text classification is provided in imdb.ipynb

Create GCP Instance

Please create a project first and create an instance in a zone which has quota as follows

gcloud compute instances create \
  bigbird \
  --zone=europe-west4-a \
  --machine-type=n1-standard-16 \
  --boot-disk-size=50GB \
  --image-project=ml-images \
  --image-family=tf-2-3-1 \
  --maintenance-policy TERMINATE \
  --restart-on-failure \
  --scopes=cloud-platform

gcloud compute tpus create \
  bigbird \
  --zone=europe-west4-a \
  --accelerator-type=v3-32 \
  --version=2.3.1

gcloud compute ssh --zone "europe-west4-a" "bigbird"

For illustration we used instance name bigbird and zone europe-west4-a, but feel free to change them. More details about creating Google Cloud TPU can be found in online documentations.

Instalation and checkpoints

git clone https://github.com/google-research/bigbird.git
cd bigbird
pip3 install -e .

You can find pretrained and fine-tuned checkpoints in our Google Cloud Storage Bucket.

Optionally, you can download them using gsutil as

mkdir -p bigbird/ckpt
gsutil cp -r gs://bigbird-transformer/ bigbird/ckpt/

The storage bucket contains:

  • pretrained BERT model for base(bigbr_base) and large (bigbr_large) size. It correspond to BERT/RoBERTa-like encoder only models. Following original BERT and RoBERTa implementation they are transformers with post-normalization, i.e. layer norm is happening after the attention layer. However, following Rothe et al, we can use them partially in encoder-decoder fashion by coupling the encoder and decoder parameters, as illustrated in bigbird/summarization/roberta_base.sh launch script.
  • pretrained Pegasus Encoder-Decoder Transformer in large size(bigbp_large). Again following original implementation of Pegasus, they are transformers with pre-normalization. They have full set of separate encoder-decoder weights. Also for long document summarization datasets, we have converted Pegasus checkpoints (model.ckpt-0) for each dataset and also provided fine-tuned checkpoints (model.ckpt-300000) which works on longer documents.
  • fine-tuned tf.SavedModel for long document summarization which can be directly be used for prediction and evaluation as illustrated in the colab nootebook.

Running Classification

For quickly starting with BigBird, one can start by running the classification experiment code in classifier directory. To run the code simply execute

export GCP_PROJECT_NAME=bigbird-project  # Replace by your project name
export GCP_EXP_BUCKET=gs://bigbird-transformer-training/  # Replace
sh -x bigbird/classifier/base_size.sh

Using BigBird Encoder instead BERT/RoBERTa

To directly use the encoder instead of say BERT model, we can use the following code.

from bigbird.core import modeling

bigb_encoder = modeling.BertModel(...)

It can easily replace BERT's encoder.

Alternatively, one can also try playing with layers of BigBird encoder

from bigbird.core import encoder

only_layers = encoder.EncoderStack(...)

Understanding Flags & Config

All the flags and config are explained in core/flags.py. Here we explain some of the important config paramaters.

attention_type is used to select the type of attention we would use. Setting it to block_sparse runs the BigBird attention module.

flags.DEFINE_enum(
    "attention_type", "block_sparse",
    ["original_full", "simulated_sparse", "block_sparse"],
    "Selecting attention implementation. "
    "'original_full': full attention from original bert. "
    "'simulated_sparse': simulated sparse attention. "
    "'block_sparse': blocked implementation of sparse attention.")

block_size is used to define the size of blocks, whereas num_rand_blocks is used to set the number of random blocks. The code currently uses window size of 3 blocks and 2 global blocks. The current code only supports static tensors.

Important points to note:

  • Hidden dimension should be divisible by the number of heads.
  • Currently the code only handles tensors of static shape as it is primarily designed for TPUs which only works with statically shaped tensors.
  • For sequene length less than 1024, using original_full is advised as there is no benefit in using sparse BigBird attention.
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to ഞാൻ ).

Merin Rose Tom 1 May 11, 2022
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022