Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

Related tags

Deep Learningmint
Overview

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021].

Overview

This package contains the model implementation and training infrastructure of our AI Choreographer.

Get started

Pull the code

git clone https://github.com/liruilong940607/mint --recursive

Note here --recursive is important as it will automatically clone the submodule (orbit) as well.

Install dependencies

conda create -n mint python=3.7
conda activate mint
conda install protobuf numpy
pip install tensorflow absl-py tensorflow-datasets librosa

sudo apt-get install libopenexr-dev
pip install --upgrade OpenEXR
pip install tensorflow-graphics tensorflow-graphics-gpu

git clone https://github.com/arogozhnikov/einops /tmp/einops
cd /tmp/einops/ && pip install . -U

git clone https://github.com/google/aistplusplus_api /tmp/aistplusplus_api
cd /tmp/aistplusplus_api && pip install -r requirements.txt && pip install . -U

Note if you meet environment conflicts about numpy, you can try with pip install numpy==1.20.

Get the data

See the website

Get the checkpoint

Download from google drive here, and put them to the folder ./checkpoints/

Run the code

  1. complie protocols
protoc ./mint/protos/*.proto
  1. preprocess dataset into tfrecord
python tools/preprocessing.py \
    --anno_dir="/mnt/data/aist_plusplus_final/" \
    --audio_dir="/mnt/data/AIST/music/" \
    --split=train
python tools/preprocessing.py \
    --anno_dir="/mnt/data/aist_plusplus_final/" \
    --audio_dir="/mnt/data/AIST/music/" \
    --split=testval
  1. run training
python trainer.py --config_path ./configs/fact_v5_deeper_t10_cm12.config --model_dir ./checkpoints

Note you might want to change the batch_size in the config file if you meet OUT-OF-MEMORY issue.

  1. run testing and evaluation
# caching the generated motions (seed included) to `./outputs`
python evaluator.py --config_path ./configs/fact_v5_deeper_t10_cm12.config --model_dir ./checkpoints
# calculate FIDs
python tools/calculate_scores.py

Citation

@inproceedings{li2021dance,
  title={AI Choreographer: Music Conditioned 3D Dance Generation with AIST++},
  author={Ruilong Li and Shan Yang and David A. Ross and Angjoo Kanazawa},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year = {2021}
}
Owner
Google Research
Google Research
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022