Unsupervised Representation Learning by Invariance Propagation

Overview

Unsupervised Learning by Invariance Propagation

This repository is the official implementation of Unsupervised Learning by Invariance Propagation.

Pretraining on Natual Images

Train on ImageNet

To train the model(s) in the paper, run this command:

python main.py --exp 'your_path' --n_background 4096 --t 0.2 --blur --cos --network 'resnet50' --nonlinearhead 1 --weight_decay 1e-4

Evaluation

To evaluate the model on ImageNet, run:

python -m downstream.linear_classification.linear_classification --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet50'

Notice that in the paper, to calculate the BFS results, we require to record the id of neighbours of each anchor point. For computational efficiency, we apprximate the BFS results by only concatenating the neighbours of each point, up to L steps. This results may be a little different with the real BFS results due to there exists repeated samples, however it works pretty well, both effectively and efficiently. Pretrained model can be found here.

Train on Cifar

To train the model(s) in cifar10 and cifar100 or svhn, run this command:

# cifar10
python main.py --exp 'your_path' -n_background 4096 --t 0.2 --blur --cos --network 'resnet18_cifar' --nonlinearhead 1 --weight_decay 5e-4 --n_pos 20 --dataset 'cifar10'
# cifar100
python main.py --exp 'your_path' -n_background 4096 --t 0.2 --blur --cos --network 'resnet18_cifar' --nonlinearhead 1 --weight_decay 5e-4 --n_pos 20 --dataset 'cifar100'
# svhn
python main.py --exp 'your_path' -n_background 4096 --t 0.2 --blur --cos --network 'resnet18_cifar' --nonlinearhead 1 --weight_decay 5e-4 --n_pos 20 --dataset 'svhn'

Evaluation

To train the model(s) in cifar10 and cifar100 run this command:

# cifar10
python -m downstream.linear_classification.eval_linear --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet18_cifar' --dataset 'cifar10'
# cifar100
python -m downstream.linear_classification.eval_linear --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet18_cifar' --dataset 'cifar100'
# svhn
python -m downstream.linear_classification.eval_linear --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet18_cifar' --dataset 'svhn'

Pretraining on Defect Classification Dataset

For validate the effectiveness and practicabilities of the proposed algorithms, we can also train and evaluate our method on Defect Detection Dataset.

Train on WM811.

python main.py --gpus '0,1,2' --exp 'output/' --n_background 4096 --t 0.07 --cos --network 'resnet18_wm811' --dataset 'wm811' --nonlinearhead 0 --weight_decay 5e-4

Evaluation

To evaluate the model on WM811, run:

python -m downstream.fine_tune_wm811 --save_folder 'your_output_folder' --model_path 'your_pretrain_model' --model 'resnet18_wm811' --dataset 'wm811' --weight_decay 1e-3 --learning_rate1 0.001 --learning_rate2 0.002 --label_smoothing 0.1 --dropout 0.5
Owner
FengWang
FengWang
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022