A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Overview

Awesome Bayesian Statistics

This is a repository that I created while learning Bayesian Statistics. It contains links to resources such as books, articles, magazines, research papers, and influential people in the domain of Bayesian Statistics. It will be helpful for beginners who want a one-stop access to all the resources at one place.

It is a collaborative work, so feel free to pull and add content to this. This way, we will be able to make it more community-driven.

Books

  1. Bayesian Statistics for Beginners: A Step-by-Step Approach, Therese M. Donovan (2019)
  2. Doing Bayesian Data Analysis: A Tutorial Introduction with R, John Kruschke (2010)
  3. Introduction to Bayesian Statistics, William M. Bolstad (2004)
  4. Bayesian Data Analysis, Donald Rubin (1995)
  5. Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks, Will Kurt (2019)
  6. A First Course in Bayesian Statistical Methods, Peter D Hoff (2009)
  7. Think Bayes: Bayesian Statistics in Python, Allen B. Downey (2012)
  8. A Student's Guide to Bayesian Statistics, Ben Lambert (2018)
  9. Bayesian Analysis with Python: Introduction to Statistical Modelling and Probabilistic Programming using PyMC3 and ArviZ, Osvaldo Martin (2016)
  10. Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference, Cameron Davidson-Pilon (2015)
  11. The Bayesian Way: Introduction Statistics for Economists and Engineers, Svein Olav Nyberg (2018)
  12. Bayesian Biostatistics, Emmanuel Lesaffre (2012)
  13. Bayes Theorem: A Visual Introduction for Beginners, Dan Morris (2017)
  14. Bayesian Econometrics, Gary Koop (2003)
  15. Regression Modelling with Spatial and Spatial-Temporal Data: A Bayesian Approach, Robert P. Haining (2019)
  16. Bayesian Reasoning and Machine Learning, David Barber (2012)

Courses

  1. Bayesian Statistics: From Concept to Data Analysis, University of California Santa Cruz
  2. Bayesian Methods for Machine Learning, HSE University
  3. Introduction to Bayesian Analysis Course with Python 2021, Udemy
  4. Bayesian Machine Learning in Python: A/B Testing, Udemy
  5. A Comprehensive Guide to Bayesian Statistics, Udemy
  6. Statistical Rethinking, Max Planck Institute for Evolutionary Anthropology, Leipzig
  7. Bayesian Statistics for the Social Science, Benjamin Goodrich, Columbia University New York
  8. Bayesian Data Analysis in Python, Datacamp

Curriculum and Syllabus

  1. MATH 574 Bayesian Computational Statistics, Illinois Tech
  2. STAT 695 - Bayesian Data Analysis, Purdue University
  3. STA360/601 - Bayesian Inference and Modern Statistical Methods, Duke University
  4. STAT 625: Advanced Bayesian Inference, Rice
  5. MSH3 - Advanced Bayesian Inference, University of Sydney

Blogs

  1. Count Bayesie by Will Kurt
  2. Evan Miller
  3. Healthy Algorithms
  4. Allen Downey
  5. Statistics Biophysics Blog
  6. Statistical Thinking by Frank Harrell
  7. Bayesian Statistics and Functional Programming
  8. Learning Bayesian Statistics

Web Articles

  1. Absolutely the simplest introduction to Bayesian statistics
  2. My Journey From Frequentist to Bayesian Statistics
  3. Frequentist vs. Bayesian approach in A/B testing
  4. Bayesian vs. Frequentist A/B Testing: What’s the Difference?
  5. Bayesian inference tutorial: a hello world example
  6. Nonparametric Bayesian Statistics
  7. A Guide to Bayesian Statistics
  8. Bayesian Priors for Parameter Estimation
  9. Bayesian Statistics Wikipedia
  10. Bayes’ Theorem: the maths tool we probably use every day, but what is it?
  11. Develop an Intuition for Bayes Theorem With Worked Examples
  12. Bayes Theorem, mathisfun.com
  13. Is Bayes' Theorem really that interesting?
  14. Understand Bayes’ Theorem Through Visualization
  15. Bayes's Theorem: What's the Big Deal?
  16. Bayes Theorem: A Framework for Critical Thinking
  17. Why testing positive for a disease may not mean you are sick. Visualization of the Bayes Theorem and Conditional Probability
  18. How To Use Bayes's Theorem In Real Life
  19. A Gentle Introduction to Markov Chain Monte Carlo for Probability
  20. Markov Chain Monte Carlo Without all the Bullshit
  21. How would you explain Markov Chain Monte Carlo (MCMC) to a layperson?
  22. Markov Chain Monte Carlo in Practice
  23. Causal Bayesian Networks: A flexible tool to enable fairer machine learning
  24. A Comprehensive Introduction to Bayesian Deep Learning
  25. A Technical Explanation of Technical Explanation
  26. An Intuitive Explanation of Bayes Theorem

Research Papers

  1. Primer on the Use of Bayesian Methods in Health Economics
  2. Experimental Design: Bayesian Designs
  3. A simple introduction to Markov Chain Monte-Carlo sampling
  4. Markov Chain Monte Carlo: an introduction for epidemiologists
  5. Monte Carlo simulation of climate systems
  6. What Are Hierarchical Models and How Do We Analyze Them?
  7. A Conceptual Introduction to Markov Chain Monte Carlo Methods
  8. Data Analysis Recipes: Using Markov Chain Monte Carlo
  9. A survey of Monte Carlo methods for parameter estimation
  10. Uncertain Neighbors: Bayesian Propensity Score Matching For Causal Inference
  11. Bayesian Matching for Causal Inference
  12. A Bayesian Approach for Estimating Causal Effects from Observational Data
  13. Bayesian Nonpar esian Nonparametric Methods F ametric Methods For Causal Inf or Causal Inference And ence And Prediction
  14. Is Microfinance Truly Useless for Poverty Reduction and Women Empowerment? A Bayesian Spatial-Propensity Score Matching Evaluation in Bolivia
  15. Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects
  16. State-of-the-BART: Simple Bayesian Tree Algorithms for Prediction and Causal Inference

People

  1. Andreas Krause, Professor of Computer Science, ETH Zurich
  2. Svetha Venkatesh, Professor of Computer Science, Deakin University
  3. Juergen Branke, Professor of Operational Research and Systems, Warwick Business School
  4. Michael A Osborne, Professor of Machine Learning, University of Oxford
  5. Matthias Seeger, Principal Applied Scientist, Amazon
  6. Eytan Bakshy, Research Director, Facebook
  7. Aaron Klein, AWS Research Berlin
  8. David Ginsbourger,University of Bern
  9. Jonathan Marchini, Head of Statistical Genetics and Methods, Regeneron Genetics Center
  10. Kyle Foreman, University of Washington
  11. Adrian E. Raftery, Professor of Statistics and Sociology, University of Washington
  12. Zoubin Ghahramani, Professor, University of Cambridge, and Distinguished Researcher, Google
  13. Jun S Liu, Professor of statistics, Harvard University
  14. David Dunson, Arts & Sciences Professor of Statistical Science & Mathematics, Duke
  15. Giovanni Parmigiani, Professor Department of Data Science, DFCI
  16. Aki Vehtari, Associate Professor, Aalto University
  17. Chiara Sabatti, Professor of Biomedical Data Science and of Statistics, Stanford University
  18. Peter E Rossi, James Collins Professor of Economics, Marketing, and Statistics, UCLA
Owner
Aayush Malik
Aayush Malik
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022