Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Overview

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation

Code to be further cleaned...

This repo contains the code of the following paper:

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation

Shuai Lin, Pan Zhou, Xiaodan Liang, Jianheng Tang, Ruihui Zhao, Ziliang Chen, Liang Lin.
AAAI 2021

Prerequisites

  1. Allennlp (0.9.1-unreleased)

  2. pytorch == 1.4.0

  3. Others should be found in ./allennlp/requirements.txt

[Note]: You need to install allennlp with the editable mode, i.e.,

cd ./allennlp
pip install --editable .
cd ..

since we have modified this toolkit (including added the metatrainer.py in the directory ./allennlp/training and so on).

Datasets

Please download both datasets from the google drive as follows:

wget https://drive.google.com/file/d/1KZ0CrIVZhSLxlZ-V5pnksvgH1xlyd54F/view?usp=sharing
tar zxvf cy.tar.gz
wget https://drive.google.com/file/d/1sZzb3Nzm_Z37lNCfgusJscFuiyhUON5j/view?usp=sharing
tar zxvf fd.tar.gz
  1. CMDD: The directory fd/dis_pk_dir, which includes raw_data, meta_train and meta_test. (The number of the file name represents the ID of a disease.) You can also obtain it at the link

  2. MDG-Chunyu: The directory cy/dis_pk_dir, which also includes the raw_data, meta_train and meta_test. The ID of diseases and symptoms are recorded in the user_dict.txt. The disease IDs are as follows:

{
  '胃炎': 2,
  '普通感冒': 13,
  '肺炎': 73,
  '便秘': 6,
  '胃肠功能紊乱': 42,
  '肠炎': 9,
  '肠易激综合征': 40,
  '食管炎': 27,
  '胃溃疡': 30,
  '阑尾炎': 35,
  '胆囊炎': 33,
  '胰腺炎': 48,
  '肠梗阻': 52,
  '痔疮': 18,
  '肝硬化': 46,
}

Quick Start

Most of the running commands are written in the script run.sh, which follows the offical train/fine-tune/evaluate way of the allennlp. Take the following one as an example:

[1]. Training:

CUDA_VISIBLE_DEVICES=1 allennlp train -s $save_directory$ \
  $config_file(.json)$ \
  --include-package $model_file$

[2]. Fine-tuning:

CUDA_VISIBLE_DEVICES=1 allennlp fine-tune -m $old save_directory$ \
  -c $config_file(.json)$ \
  --include-package $model_file$
  -s $new save_directory$

[3]. Testing:

CUDA_VISIBLE_DEVICES=3 allennlp evaluate  $new save_directory$ \
  $test_data$ \
  --include-package $model_file$ \
  --output-file $output_directory$
Owner
Shuai Lin
Master student @sysu, mainly focus on ML/NLP.
Shuai Lin
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022