Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Overview

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation

Code to be further cleaned...

This repo contains the code of the following paper:

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation

Shuai Lin, Pan Zhou, Xiaodan Liang, Jianheng Tang, Ruihui Zhao, Ziliang Chen, Liang Lin.
AAAI 2021

Prerequisites

  1. Allennlp (0.9.1-unreleased)

  2. pytorch == 1.4.0

  3. Others should be found in ./allennlp/requirements.txt

[Note]: You need to install allennlp with the editable mode, i.e.,

cd ./allennlp
pip install --editable .
cd ..

since we have modified this toolkit (including added the metatrainer.py in the directory ./allennlp/training and so on).

Datasets

Please download both datasets from the google drive as follows:

wget https://drive.google.com/file/d/1KZ0CrIVZhSLxlZ-V5pnksvgH1xlyd54F/view?usp=sharing
tar zxvf cy.tar.gz
wget https://drive.google.com/file/d/1sZzb3Nzm_Z37lNCfgusJscFuiyhUON5j/view?usp=sharing
tar zxvf fd.tar.gz
  1. CMDD: The directory fd/dis_pk_dir, which includes raw_data, meta_train and meta_test. (The number of the file name represents the ID of a disease.) You can also obtain it at the link

  2. MDG-Chunyu: The directory cy/dis_pk_dir, which also includes the raw_data, meta_train and meta_test. The ID of diseases and symptoms are recorded in the user_dict.txt. The disease IDs are as follows:

{
  '胃炎': 2,
  '普通感冒': 13,
  '肺炎': 73,
  '便秘': 6,
  '胃肠功能紊乱': 42,
  '肠炎': 9,
  '肠易激综合征': 40,
  '食管炎': 27,
  '胃溃疡': 30,
  '阑尾炎': 35,
  '胆囊炎': 33,
  '胰腺炎': 48,
  '肠梗阻': 52,
  '痔疮': 18,
  '肝硬化': 46,
}

Quick Start

Most of the running commands are written in the script run.sh, which follows the offical train/fine-tune/evaluate way of the allennlp. Take the following one as an example:

[1]. Training:

CUDA_VISIBLE_DEVICES=1 allennlp train -s $save_directory$ \
  $config_file(.json)$ \
  --include-package $model_file$

[2]. Fine-tuning:

CUDA_VISIBLE_DEVICES=1 allennlp fine-tune -m $old save_directory$ \
  -c $config_file(.json)$ \
  --include-package $model_file$
  -s $new save_directory$

[3]. Testing:

CUDA_VISIBLE_DEVICES=3 allennlp evaluate  $new save_directory$ \
  $test_data$ \
  --include-package $model_file$ \
  --output-file $output_directory$
Owner
Shuai Lin
Master student @sysu, mainly focus on ML/NLP.
Shuai Lin
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023